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ABSTRACT

Static application security testing (SAST) takes a significant role in
the software development life cycle (SDLC). However, it is challeng-
ing to comprehensively evaluate the effectiveness of SAST tools to
determine which is the better one for detecting vulnerabilities. In
this paper, based on well-defined criteria, we first selected seven
free or open-source SAST tools from 161 existing tools for further
evaluation. Owing to the synthetic and newly-constructed real-
world benchmarks, we evaluated and compared these SAST tools
from different and comprehensive perspectives such as effective-
ness, consistency, and performance. While SAST tools perform
well on synthetic benchmarks, our results indicate that only 12.7%
of real-world vulnerabilities can be detected by the selected tools.
Even combining the detection capability of all tools, most vulnera-
bilities (70.9%) remain undetected, especially those beyond resource
control and insufficiently neutralized input/output vulnerabilities.
The fact is that although they have already built the corresponding
detecting rules and integrated them into their capabilities, the de-
tection result still did not meet the expectations. All useful findings
unveiled in our comprehensive study indeed help to provide guid-
ance on tool development, improvement, evaluation, and selection
for developers, researchers, and potential users.
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1 INTRODUCTION

The early detection and handling of vulnerabilities in software code
is a matter of concern for software development. In recent years, se-
curity vulnerabilities such as Log4Shell [66] and Spring4Shell [67]
have raised alarm bells. Researchers have also proposed various
methods to detect software vulnerabilities such as formal verifica-
tion [4], static application security testing (SAST) [59], dynamic
application security testing (DAST) [95], and interactive application
security testing (IAST) [81]. Practically, SAST is the most popular
technology due to its lower cost, faster operation, and stronger
capability to detect bugs or vulnerabilities without executing a pro-
gram. Hence, the development of SAST technology has obviously
evolved, and the number of corresponding tools has rapidly grown
in recent years [13, 44, 68-70, 74, 85, 90, 93, 107].

However, it is still challenging for users to objectively evalu-
ate and select the appropriate SAST tools due to the following
reasons. (1) Firstly, existing studies are mainly conducted on syn-
thetic datasets [2, 58, 80, 101], where vulnerabilities are usually
implemented and injected into programs manually. Compared to
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Figure 1: Overview of our study.

real-world vulnerabilities [8], they are much simpler in design and
easier to be detected. Therefore, it is hard to objectively reflect the
detection capability of tools in real-world programs. OpenSSF [76]
also emphasized the importance of using real-world vulnerability
data to evaluate the effectiveness of SAST tools and developed a
benchmark [75] which contains over 200 CVEs (Common Vulner-
abilities and Exposures) [14]. However, their benchmark only in-
cludes JavaScript and TypeScript CVEs. Some studies have also been
exhibited to evaluate the effectiveness of SAST tools on open-source
programs [1, 46, 97], in which the datasets used are often small in
size and limited in the number and types of contained vulnerabili-
ties. (2) Furthermore, the focus of existing studies [41, 51, 98, 100]
concerns more on quality issues, e.g., code styles, performance,
and bad practices, rather than security vulnerabilities. For example,
Thung et al. [98] performed an evaluation on Java SAST tools, in
which they explored to what extent the Java SAST tools detect real-
world defects on three open-source Java programs, and analyzed
five kinds of defects including code style and bad practices. (3)
Thirdly, specifically for Java SAST tools, the shortage of knowledge
on commonly detected types of vulnerabilities makes researchers
even harder to gain deeper insights into the strengths and weak-
nesses of a given tool. Besides, the consistency of vulnerability
types that actually reported in detection and claimed to support in
documentation is also an interesting research question to explore.

Java is one of the most popular and well-developed program-
ming languages, with a broad scope of application scenarios [99].
However, till now, there is still a lack of effort in evaluating SAST
tools on real-world programs, especially for Java. In a concurrent
work evaluating SAST tools, Lipp et al. [50] focused on SAST tools
for C programs, in which they evaluated the effectiveness of six
tools on 192 real-world vulnerability datasets using 27 open-source
C projects. But the results on C SAST tools may be not feasible
for Java SAST tools because of the different language constructs.
Meanwhile, the corresponding SAST tools can differ in their usage,
and it is a question that how to choose a Java SAST tool that is
suitable for scanning speed or workflow integration besides the
effectiveness of vulnerability detection.

As shown in Figure 1, to bridge these gaps, we evaluated 7 rep-
resentative Java SAST tools filtered from 161 tools. Then, we used
Common Weakness Enumeration (CWE) [25] as a reference to map
the detecting rules of these tools and CVEs contained in our col-
lected benchmark datasets to CWE, and automatically compared
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the effectiveness of each tool. We collected 2 types of benchmark
datasets including a synthetic dataset (i.e., OWASP Benchmark) and
a real-world benchmark (i.e., the Java CVE Benchmark). The latter
includes 165 open-source Java programs with 165 unique CVEs.
The dataset covers 37 unique vulnerability types (CWE Weaknesses),
belonging to 8 CWE Classes in CWE-1000 [19]. For this, we eval-
uated the tools’ effectiveness against the 2 benchmarks. Based on
their poor effectiveness on the Java CVE Benchmark, we further dis-
sected the composition of false negatives. Moreover, we performed
a consistency evaluation on the vulnerabilities detected by these
tools between the actually detected ones and what is claimed in the
detecting rules. Finally, we performed a performance analysis on
1,049 representative Java open-source programs.

Our study unveils that the evaluation of SAST tools on synthetic
datasets does not objectively reflect the detection capability of the
tools. In particular, the selected tools overlooked most (87.3%) real-
world vulnerabilities in the Java CVE Benchmark, while they have
been shown to perform well on the OWASP Benchmark. Meanwhile,
over 70% of vulnerabilities still remain undetected when combining
the results of SAST tools, especially those beyond the scope of
CWE-664 and CWE-707. For consistency analysis, we observed that
these tools generally overstate their detection capabilities, even
with 90.5% overstatement on our real dataset. Meanwhile, their
analysis time increases sharply when the line of code (LoC) is over
50k. In particular, Insider [44] and Contrast [90] are the fastest,
while Semgrep [85] and CodeQL [13] require the longest time.

In summary, we made the main contributions as follows:

e We constructed a real-world benchmark containing 165 open-
source Java programs with 165 unique CVEs on the method level,
which is considered the largest real-world vulnerability bench-
mark for Java. It costs 13.5 person-months for the construction.

e To fairly compare the 7 SAST tools’ detecting rules, we mapped
and grouped 1,801 rules of tools studied and vulnerability data in
our 2 benchmarks into CWE Classes, and analyzed the detection
consistency among tools, as well as that between the detected
vulnerability types and those claimed in their detecting rules.

e We conducted a large-scale empirical evaluation of the selected
tools from comprehensive perspectives, including effectiveness,
consistency, and runtime performance. To this end, 43,519 (i.e.,
7 % (2,740 + 165 X 2 + 1,049 X 3)) scanning tasks are conducted.

e Based on the evaluation results, we discussed the lessons learned
and detailed the guidance on SAST tool development, improve-
ment, evaluation, and selection for SAST tool developers, re-
searchers, and potential users.

2 OVERVIEW
2.1 Tool Selection

We aim at gathering a representative set of SAST tools since it is
infeasible to give a complete set of all existing tools. Therefore,
we searched tool lists from recent scientific literature [1, 5, 40,
41, 51, 56, 80, 92, 98, 100] and snowballed from them, as they also
recommend further lists. Eventually, we obtained several prominent
websites [34, 35, 72, 73, 77, 78, 104] giving recommendations for
SAST tools. This process resulted in a very substantial set of SAST
tools [103], even after removing duplicates (192 out of 576). We
designed the following criteria to select our evaluation subjects.
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Table 1: Tool profile. Technology: Semantic (data-flow and
control-flow analysis) or Syntactic (pattern-matching within
the code). # Stars indicates GitHub stars.

Tool Technology # Stars Version
CodeQL Semantic 6.1k v2.10.2
Contrast Semantic / 1.0.10
Horusec Syntactic 903 v2.8.0
Insider Syntactic 429 v3.0.0
SBwFSB Semantic 3.1k v4.7.0,v1.12.0
Semgrep Semantic 8.3k v0.108.0
SonarQube Semantic 7.8k v9.5.0, v4.1.0

® Java supported. First, we only included SAST tools that support
Java programs and obtained 161 Java SAST tools in total.

@ Free of charge. Second, the Java SAST tools must be free of
charge. While commercial tools are indeed prevalent in the industry,
they often entail substantial costs and do not disclose their internal
rule implementations, thereby posing analytical limitations for our
study. Thus, 54 commercial tools were excluded.

® Being maintained. Third, we eliminated tools that were no
longer maintained. Specifically, we manually checked whether the
tool’s open-source repository had been active for the last 2 years.
After this step, 20 SAST tools were further removed.

@ Command-line interface (CLI). Moreover, we did not consider
tools that have usage limits or purely operate through a graphical
user interface, as we aim to conduct a large-scale experiment in this
study. Therefore, we excluded 33 tools such as Reshift [88], HCL
AppScan CodeSweep [42], and GitHub Code Scanning [36].

® Security related. We try to select tools that identify generalized
security vulnerabilities, rather than those aimed to detect specific
vulnerabilities or code quality issues such as linters [105]. Initially,
we selected tools that claim they can detect “vulnerabilities”, “secu-
rity issues”, and other similar terms in their documentation. Further-
more, to facilitate the comparison and evaluation of tool effective-
ness between synthetic and real-world benchmarks, it is required
that tools should demonstrate an ability to detect vulnerabilities
in synthetic benchmarks such as the OWASP Benchmark, i.e., be
able to detect at least two vulnerability types. Finally, we excluded
6 tools including Error Prone [38], Facebook Infer [54], Check-
style [9], PMD [83], google-java-format [39], and Mega-Linter [79].

® Well-documented with detecting rules. Note that we intend
to select SAST tools with well-documented detecting rules, which
allows us to analyze the effectiveness of each tool by mapping them
to CWE. Meanwhile, we explore whether the detecting capacity
they claim in the rules is consistent with that in practice. After
applying this criterion, we excluded 41 tools that did not provide
publicly available documentation of their detecting rules.

Based on these criteria, we finally selected 7 tools: CodeQL, Con-
trast Codesec Scan (Contrast), Horusec [107], Insider, SpotBugs [70]
with FindSecurityBugs [69] (SBWFSB), Semgrep, and SonarQube
community edition (SonarQube) [93] (Table 1). We have uploaded
the full candidate SAST tool list [102].

2.2 Benchmark Collection

2.2.1 OWASP Benchmark. For the synthetic dataset selection, we
considered OWASP Benchmark [31], as it is consistently maintained
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and updated compared with other synthetic datasets such as the
Juliet Test Suite Java [71] and OWASP Top 10 2020 Benchmark [30].
Although the vulnerabilities within it are synthetic, we can use them
to draw preliminary conclusions about the detection capabilities of
SAST tools. Each case within it has either a genuine, exploitable
vulnerability (1,415 in total) or a non-vulnerable control instance
mimicking a false positive (1,325 in total).

2.2.2  Java CVE Benchmark. In response to OpenSSF’s call for real-
world vulnerability data in SAST tool evaluation, we constructed a
Java CVE Benchmark by involving four steps as follows:

e Java programs collection: We first searched Java open-source
programs with disclosed CVEs and corresponding patch commits
from advisory sources such as NVD [57], Debian [24], and Red
Hat Bugzilla [87], initially obtaining a list of 680 programs.
Version range extraction and method-level locating: We uti-
lized SZZ [91] to extract the vulnerable version range of programs
affected by each CVE, ensuring accurate identification of affected
versions. Meanwhile, we employed Ctags [15] to locate method-
level information for both vulnerable and patched versions, which
is essential for a detailed analysis of the vulnerabilities.
Program packaging: Since the tools under evaluation accept
different types of input (e.g., source code and binaries), we further
excluded the programs that failed to be packaged. We finally
obtained 165 package-able programs [102].

Cross-validating: To ensure the benchmark quality, we engaged
three security experts from our industry partner. They verified
the vulnerability locations identified by our automated process
and cross-validated each other’s work. Each expert thoroughly
reviewed the details provided in the vulnerability and patch in-
formation obtained from advisory sources. After that, they cross-
validated each other’s results. If disagreements arose during the
cross-validation, a majority voting [43] was used to make the
decision. In cases where the votes were evenly split, a discussion
was held to resolve the conflict. The vulnerability was then la-
beled with detailed information such as its location, the affected
versions, and the specific methods where the vulnerabilities and
patches were located.

Finally, we got 165 package-able open-source programs con-
taining 165 unique CVEs, where each program owns a vulnerable
version and a patched version, with the location of vulnerabili-
ties and patches labeled at the method level. The entire process of
collecting the Java CVE Benchmark took us 13.5 person months,
with an additional 3 person months spent on cross-validating the
vulnerability and patch locations. To the best of our knowledge, it
is the largest real-world Java vulnerability benchmark.

2.3 Mapping Vulnerability Data in Benchmarks

and Detecting Rules of Tools to CWE

Since SAST tools use different identifiers for the vulnerability types
they support, e.g., Insider uses CWEs in the reported issues, while
others introduce their own vulnerability identifiers. These different
identifiers make it difficult to automatically determine whether
a SAST tool hits a specific vulnerability type. CWE refers to a
community-developed list of software and hardware weakness
types, including security vulnerabilities, which is also used in CVE
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Table 2: CWE mapped by our benchmarks and each SAST tool.

# Vulnerabilities/Rules # CWE Weaknesses CWE-284 CWE-435 CWE-664 CWE-682 CWE-691 CWE-693 CWE-697 CWE-703 CWE-707 CWE-710

OWASP Benchmark 2,740 11 X X 394 X X 1,042 X X 1,304 X
Java CVE Benchmark 165 37 14 4 102 X 7 15 X 3 31 1
CodeQL 1,065 196 75 3 401 20 17 150 19 28 9% 204
Contrast 46 41 5 1 15 X 1 11 1 1 17 1
Horusec 216 47 11 X 40 X 3 59 X 3 24 6
Insider %0 30 4 1 9 X 1 8 X X 6 3
SBWFSB 152 53 6 3 39 X 3 31 X 1 42 3
Semgrep 165 43 6 1 46 X 12 67 X X 21 3
SonarQube 66 37 10 1 21 X X 21 X 1 5 2
CWE-664 CWE Classes Table 2 shows each class in CWE-1000 is included/supported
N
CwE. 688 {errins or not (X ). The number of corresponding vulnerabilities/rules is
R TN further displayed if included/supported. Totally, 2,740 vulnerabil-
CWE-8 CWE-22 CWE-134 | CWE Weaknesses

t
/ CWE23

TaintedPath

Detecting rules

PartialPathTraversal |

Figure 2: Example of mapping and grouping rules to CWE.

reports [18] and supported by many SAST tools [20]. In addition,
all of these tools have mapped their own rules to CWE in their
documentation or GitHub repository except for SpotBugs,! so we
consider it a valid approach by evaluating them according to CWE.
In this study, we selected “CWE-1000: Research Concepts” as
a reference, since it aims at facilitating research into weaknesses,
including inter-dependencies among CWE entries when compared
with the other two CWE Views [21]. Considering that direct map-
ping of rules to CWE Weaknesses poses some hierarchical incon-
sistencies, as shown in Figure 2, which may distinguish the effec-
tiveness of the tools that map rules to different levels. Similarly,
CWE also has hierarchical structure issues [40, 50]. We considered
mapping detecting rules directly to the “Pillar” [22] level (hereafter
denoted by CWE Classes) in CWE-1000 for the purpose of unifying
them to the same level of CWE. Therefore, to enable us to automate
the evaluation of the tools studied, we use CWE as a reference, with
the vulnerability data in the two benchmarks and the tool’s rules
mapped to CWE Classes in CWE-1000, respectively.
Mapping vulnerability data to CWE. Since all of the vulnerabili-
ties in our two benchmarks have been mapped to CWE Weaknesses,
we thereby mapped them to CWE Classes according to CWE-1000.
Mapping detecting rules to CWE. Similarly, since these tools
have mapped their detecting rules to CWE Weaknesses except for
SpotBugs, we only need to map them to CWE Classes according to
the hierarchy of CWE-1000. For SpotBugs, we manually mapped
its rules to both CWE Weaknesses and CWE Classes. This process
involved three co-authors independently performing the mapping.
They consulted the rule documentation and the hierarchy of CWE-
1000 during this process. Any conflicts in mapping results were
resolved through “majority voting”. Finally, we determined the
support for CWE Classes by the tools. A CWE Class was considered
supported by a tool if the rule documentation stated it implemented
a check for at least one CWE Weakness within that class.

1We obtained the mapping documentation of Contrast from its technical support team.
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ities included in OWASP Benchmark are grouped into 11 CWE
Weaknesses and 3 CWE Classes, while our real-world benchmark
owns more coverage than it does, i.e., including 37 CWE Weaknesses
grouped into 8 CWE Classes except for CWE-682, and CWE-697.

3 COMPARISON AND EVALUATION

The evaluation aims to answer the following research questions:

e RQ1: Effectiveness analysis. How effective are these SAST
tools in detecting vulnerabilities on OWASP Benchmark and our
constructed Java CVE Benchmark?

RQ2: Detection result dissection. What are the root causes of
the detection results in RQ1?

RQ3: Consistency analysis. Are the detection results consis-
tent among these tools in terms of the detected vulnerability
types? Are the detected vulnerability types consistent with what
was claimed in each tool?

RQ4: Performance analysis. How is the performance of these
tools (i.e., the time cost of detection)?

3.1 RQ1: Effectiveness Analysis

3.1.1  Setup. We evaluated the effectiveness of the 7 tools on the
two benchmarks. For the OWASP Benchmark, we compute Recall,
Precision, and F1-score as the evaluation metrics. For the Java
CVE Benchmark, we calculate the proportion of detected CVEs,
denoted as CVE_R (347 CVE#s %‘z’enchmark ), and the proportion of
CVEs still detected in the patched versions, denoted as CVE_Rpasch

(# (DvulnDputch)
# Doyl
CVEs in the vulnerable and patched versions, respectively. The

latter metric approximates the rate of false positives. Inspired by
previous works [50, 98], we evaluated the real-world detection
capabilities of these tools with respect to file-level and method-level,
and divided them into four different scenarios as follows:

). Here, Dyy,; and Dpgyep, represent the detected

o File-level Detection with Any CWE Class (Sp—4): A CVE is
considered detected if >1 vulnerable file is hit by the tool, regard-
less of the CWE Class reported.

o File-level Detection with Correct CWE Class (Sp_c): A CVE
is considered detected if >1 vulnerable file is hit by the tool, with
the correct CWE Class reported.

o Method-level Detection with Any CWE Class (Sp;—4): A CVE
is considered detected if >1 vulnerable method is hit, regardless
of the CWE Class reported.
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Figure 4: Number of detected CVEs in different scenarios.

o Method-level Detection with Correct CWE Class (Sy;—c): A
CVE is considered detected if >1 vulnerable method is hit with
the correct CWE Class reported.

3.1.2  Results. The overall results on these two benchmarks are
shown in Figure 3 and Figure 4, respectively.

Effectiveness on the OWASP Benchmark. Figure 3 shows that
Contrast and SBWFSB can detect close to all synthetic vulnerabili-
ties, with F1-score 84.4%, and 82.8%, respectively. However, Insider
failed to detect most synthetic vulnerabilities with 23.9% Recall,
9.8% Precision, and 13.9% F1-score. As displayed in Figure 5, the
effectiveness on three CWE Classes varies from tools. However,
synthetic vulnerabilities belonging to CWE-693 are easier detected
by tools, especially those involving insecure cryptographic algo-
rithms or insufficiently random values. While those related to Path
Traversal (CWE-22) and Trust Boundary Violation (CWE-501) are
hardly detected by these tools. In particular, Horusec and Insider
failed to detect all of these two types. For Insider, the number of its
detecting rules is limited, with no strong coverage of diverse Java
vulnerabilities, i.e., 90 in total, with only 9 rules related to CWE-664.
Moreover, Insider has no rule supporting CWE-501 and CWE-22
although claiming to cover the OWASP Top 10. While for Horusec,
CWE-501 is also not supported by its rules. However, we further
noticed that CWE-22 is supported by its rules but not detected.
More specifically, Horusec implements 3 related rules, but all of
them are based on primitive regular expressions which only detect
few related vulnerabilities related to the hard-coded use of either
@javax.ws.rs.PathParam() or @jakarta.ws.rs.PathParam().

Finding 1: SAST tools generally perform well on the synthetic
dataset (i.e., the OWASP Benchmark), especially Contrast and
SBwWFSB, which both got an F1-score over 80%, while Insider
showed the lowest detection rate (i.e., 13.9% F1-score), following
SonarQube with an F1-score of 27.0%.
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1 from DataFlow::PathNode source, DataFlow::PathNode sink,

2 PathCreation p, Expr e, TaintedPathLocalConfig conf

3 where e = sink.getNode().asExpr() and e = p.getAnInput()
and

4 conf.hasFlowPath(source, sink) and not guarded(e)

5 select p, source, sink, "$@ flows to here and is used in a
path.",

6 source.getNode ()

Listing 1: TaintPathLocal.ql in CodeQL.

Effectiveness on the Java CVE Benchmark. As shown in Figure 4,
the effectiveness of the 7 tools is analyzed in the 4 scenarios afore-
mentioned. Note that there may exist some cases in Sy;—c where
some tools hit the true CWE Class of a CVE, but a wrong CWE
Weakness was actually reported. To ensure the accuracy of our re-
sults, we further checked the CWE Weaknesses reported by the tools
in Spr—c. The corrected results are presented as “Manual Check” in
Figure 4 . Contrary to the effectiveness on OWASP Benchmark, it
displays poor effectiveness on real-world vulnerabilities of these
tools, reflecting that over 85% of CVEs were ignored by selected
tools. Even the top-performing tool (Horusec) achieved a mere
12.7% CVE_R. Although Horusec is a syntax-based tool whose rules
are implemented by regular expressions, it outperforms the three
semantic-based tools (SBwFSB, CodeQL, and Semgrep). This un-
veils that the semantic analysis method is not always more effective
than the less complex syntactic ones when in practice. Moreover,
we observed that Horusec integrated with some other tools (e.g.,
GitLeaks [37] and Trivy [89]). It is worth noting that Horusec also
integrates OWASP Dependency-Check [32] within it, a Software
Composition Analysis (SCA) [33] tool, helping Horusec hit another
49 correct CVEs by scanning the vulnerable TPLs used in programs.
Although it is not a SAST tool, such an approach may inspire us
for detecting more vulnerabilities during DevSecOps [86].

Following Horusec, SBwFSB, and CodeQL detected 17 (10.3%)
and 11 (6.7)% CVEs. Both tools are equipped with data-flow analysis
(DFA) and control-flow analysis (CFA), especially taint analysis. To
detect vulnerabilities, SBWFSB uses resource files to list and store
vulnerable sources and sinks to search taint paths, which can limit
its search scope in practice. CodeQL models source code as database
records allowing its queries to search when scanning, which is
considered a stronger technology than SBwFSB. But we found that
the default rules within CodeQL are still simple which limits its
effectiveness when detecting complex vulnerabilities such as CVEs.
For instance, consider a CodeQL rule designed to detect CWE-22
vulnerabilities, as shown in Listing 1. It tracks tainted data from
user input (source) to a file path creation (sink) (L3-4). However,
it fails to detect indirect influences of user input on path creation.
Additionally, it deems a variable as “guarded” if it undergoes any
form of check or sanitization, which may not be sufficient. For
example, simply replacing “./” in user input could not prevent an
attacker from constructing a path traversal string such as “..././..././".
This inadequate sanitization could still lead to an exploit, which
this default rule would not detect.

Notably, Contrast, the most effective tool according to the OWASP
Benchmark, nearly failed to detect all the CVEs in all 4 scenarios.
Thus, the evaluation using synthetic datasets may yield discrepan-
cies or even opposite conclusions from those on real-world ones.
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Figure 5: Effectiveness of each class on OWASP Benchmark.

680 Java programs
\ Java CVE Benchmark

Table 3: Detection results
according to CVSS severity.

CVSS severity # Detected # Total

High 13 40 OHigh =Medium ©Low
Medium 32 120
Low 3

Figure 6: Severity distribution
in the Java CVE Benchmark.

Finding 2: These tools overlook more than 85% of CVEs (false
negatives), although performing well against synthetic bench-
marks. Horusec and SBwFSB perform better than the other
tools, with a CVE_R of only 12.7%, and 10.3% respectively.

Effectiveness vs. CVSS severity. We try to explore the relation-
ship between the effectiveness of SAST tools and the severity of
vulnerabilities by leveraging the Common Vulnerability Scoring
System (CVSS) [28] associated with each CVE. Due to the absence
of CVSS V3 [17] for some CVEs, we finally used CVSS V2 [16] for
a fair evaluation. As shown in Figure 6, the severity distribution of
the Java CVE Benchmark aligns with that of the original 680 pro-
grams, suggesting that the distribution of our benchmark does not
significantly skew the results. As outlined in Table 3, SAST tools
detected 60% of low-severity CVEs. For medium-severity CVEs,
the detection ratio dropped to 26.7% (32/120). Interestingly, the
detection ratio for high-severity CVEs was slightly higher at 32.5%.

Meanwhile, we also observed distinct detection patterns within
each severity level. For instance, all four high-severity injection-
related vulnerabilities, which fall under the Improper Neutraliza-
tion (CWE-707) class, were detected. However, no input-validation
issues, also under CWE-707, were detected at this level. The dis-
crepancy in detection rates could be due to the complexity of high-
severity vulnerabilities or the nature of the vulnerability itself. For
instance, injection vulnerabilities, which often involve improper
input handling, might be easier to detect than deserialization vul-
nerabilities, which require complex object processing. Additionally,
only 5% (2/40) of medium-severity Deserialization of Untrusted Data
(CWE-502) vulnerabilities were detected. Out of these, 38 vulnera-
bilities were found in the widely used jackson-databind [53] project,
yet none were detected, highlighting the importance of effective
vulnerability detection in popular software components.
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Table 4: Approximate false positives in Sp_¢ and Sy;_c.

Tools Sr-c Su-c
# Dy # (Dyut N Dparen) | # Dyur # (Dyur N Dparen)
CodeQL 15 9 11 5
Contrast 2 2 1 1
Horusec 38 23 21 6
Insider 11 11 4
SBwFSB 26 25 17 16
Semgrep 31 26 4
SonarQube 12 8 9 5

To analyze approximate false positives, we focused on Sp_c
and Sy;_c since there is no focus on CWE Classes in the other sce-
narios as mentioned before. As shown in Table 4, while most of
the tools are generally poor in detecting real-world vulnerabili-
ties, there are still rather the same vulnerabilities reported in the
patched versions. Overall, it reflects that the selected tools are not
“vulnerability-sensitive” enough since they are not sensitive enough
to distinguish pieces of code before and after patching the vulner-
ability. Especially in Sys_c, it unveils that Horusec and CodeQL
are more effective than the other tools on the patched versions,
with a CVE_Rpgych at 28.6% and 45.5%, respectively, while SBwFSB
still reported 16/17 the same CVEs. It was observed that there exist
minor differences between each vulnerable and patched version on
the syntax level, but the patched version does fix the corresponding
CVE. However, the detecting rules of these tools are coarse-grained.
This results in these tools capturing only simple patterns of these
CVEs on the syntax level, instead of capturing their exact patterns
on the semantic level. Meanwhile, we observed that there are cer-
tain vulnerability types are more often labeled as false positives
than others in the tools. For instance, Incorrect Type Conversion or
Cast (CWE-704), which is mapped by HS-JAVA-143 by Horusec,
is very likely to be false positives in our scope, especially on the
Jjackson-dataformats-binary [27] (205/275, 74.5%). Therefore, identi-
fying these kinds of vulnerability types and disabling corresponding
rules probably contributes to reducing false positives, although a
few true positives may be omitted.

Finding 3: These tools are not “vulnerability-sensitive” when
performing on patched versions, which reflect tools’ false posi-
tives. In particular, Horusec (6/21) and CodeQL (5/11) perform
better than the others. While SBWFSB seems less sensitive
(16/17) than the other 6 tools in Sy;_c.
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Figure 7: Distribution of detected CVEs in each CWE Class.

3.2 RQ2: Detection Result Dissection

3.2.1 Setup. To analyze the root causes for the poor effectiveness
of the selected tools, we manually reviewed the 48 detected CVEs
and the 117 missing ones as well as the detecting rules’ imple-
mentation. This process was conducted in three rounds involving
three co-authors. Initially, each co-author individually analyzed all
the CVEs and detection rules of each tool, checking for any rules
mapped to CWE Weaknesses for undetected CVEs. Subsequently,
they discussed their findings to reach a consensus, resolving any
disagreements through further discussion. In the final round, 20%
of the CVEs were randomly selected for review by all authors. Dis-
agreements were resolved through discussion, potentially leading
to updates on the root causes. Finally, we grouped the root causes
into three main categories.

3.22  Results. Best vs. worst detected CWE Classes. Overall, Fig-
ure 7 reflects that among the vulnerabilities in our Java CVE Bench-
mark, CWE-{664, 707} are the easily detected CWE Classes. Specif-
ically, CWE-664 refers to Improper Control of a Resource Through
its Lifetime, which involves the management of system resources
such as memory allocation and deallocation, and CWE-707 refers
to Improper Neutralization, which includes vulnerabilities related
to the improper handling of input or data. Interestingly, although
vulnerabilities related to the two classes of CWE-691 and CWE-
710 are theoretically supported by all the deployed tools, most of
the associated CVEs remained undetected, except the SonarQube
which lacks rules for CWE-691. It is due to their low proportion
(4.8%) in our real-world benchmark. In particular, CVEs related to
CWE-664 are detected by all the tools. After eliminating the over-
lapping in detected vulnerabilities, 32 unique CVEs (32/107) in this
class were found. Especially, CVEs of {CWE-22, CWE-502, CWE-
200, and CWE-611} are the most frequently detected types within
this class, accounting for 62.5% (20/32). Moreover, 22 (14 unique) of
the 31 CVEs related CWE-707 were detected by all tools except for
Contrast. Within this class, 3 OS Command Injection (CWE-78), and
3 Improper Input Validation (CWE-20) were detected.

Finding 4: Real-world vulnerabilities related to CWE-664 and
CWE-707 are more easily detected, especially those relevant
to CWE-{22, 200, 502, 611}, CWE-{20, 78} are more effectively
detected. However, these tools still missed 70.1% of the 107
CWE-664 vulnerabilities and 37.5% of the 29 CWE-707 ones.

Composition of missing vulnerabilities (false negatives). The
48 successfully detected CVEs can be grouped into seven CWE
Classes: CWE-284 (3), CWE-664 (32), CWE-691 (2), CWE-693 (6),
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1 for (javax.servlet.http.Cookie theCookie : theCookies) {

2 if (theCookie.getName().equals("BenchmarkTest00002")) {

3 param = java.net.URLDecoder.decode(theCookie.
getValue(), "UTF-8");

4 break;

5 }

6 %}

7 fileName = org.owasp.benchmark.helpers.Utils. TESTFILES_DIR+
param;

8 fos = new java.io.FileOutputStream(fileName,

Listing 2: Testcase 0002 (CWE-22) in the OWASP Benchmark.

false);

CWE-703 (2), CWE-707 (14), and CWE-710 (1). We observed that it
is because their patterns are easy for SAST to spot, e.g., CVE-2019-
18393 [65] is a typical vulnerability related to CWE-22 caused by not
checking the use of “\”, which is a common path-traversal pattern
for SAST tools to detect. As displayed in Table 5, the composition of
overlooking the 117 CVEs can be summarized into three categories:
® C1: No detecting rules supported by tools (2.6%-8.5%). In
this category, although only 3 (2.6%) CVEs are not supported by any
tool’s pre-defined rules, we found that each tool generally fails to
support 2-10 (8.5%) CVEs which SAST is typically sufficient to detect
but no rule was implemented. In particular, even CodeQL, which
has the most rules among these tools, still failed to implement rules
for 10 CVEs in the Java CVE Benchmark. For instance, CVE-2015-
2913 [62] is related to Use of Insufficiently Random Values, where
SAST is generally sufficient to detect most relevant instances [6]
although false negatives may occur if custom cryptography is used.
@ C2: Inadequate detection capabilities of tools (76.9%-82.9%).
90-97 CVEs were undetected due to inadequate detection capacities
of these tools, indicating that the predefined rules in the tools
are not sufficiently effective in identifying real-world vulnerabil-
ities. On the one hand, the primitive implementation of predefined
rules, including source and sink lists, significantly impacts the
tools’ detection, e.g., 91.2% (52/57) of CVEs related to CWE-502
went undetected despite targeted rules. While a base search for
ObjectInputStream() and readObject() in source code could
detect some related vulnerabilities, most cases required additional
DFA and CFA in rule implementation. On the other hand, code
patterns in the CVEs were notably more complex than those in
the synthetic cases, a finding that is also revealed in a concurrent
study on Android [52]. For instance, despite owning rules targeting
CWE-22, tools such as SBwFSB and CodeQL only detected 16.7%
of related CVEs, even though they could detect all synthetic cases
labeled with the same CWE in the OWASP Benchmark. As shown
in Listing 2, the synthetic code pattern is relatively straightforward
and follows a linear flow within the same scope.

Conversely, the code pattern in the Java CVE Benchmark exam-
ple [94] (Listing 3) is more nuanced and encapsulated within a class
structure. It arises from two separate methods for user-controlled
input and usage respectively with an implicit connection of a class
field. Although there is some normalization (L5), it is not sufficient
to prevent path traversal sequences. The vulnerability manifests
when another method getURL attempts to read the field this.path
and resolve it (L11-17), and an attacker can exploit this by providing
specially crafted paths. Detecting it requires the ability of inter-
procedural DFA and insufficient validation detection, which is not
required by Listing 2.
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Table 5: Examples of missing CVEs by categories.

Categories CVE ID CWE Weakness CWE Class
c1 CVE-2015-2913 CWE-330 CWE-693
CVE-2013-5960 CWE-310 CWE-693
C2 CVE-2018-9159 CWE-22 CWE-664
CVE-2021-20190 CWE-502 CWE-664
c3 CVE-2014-3651 CWE-400 CWE-664
CVE-2018-1274 CWE-770 CWE-664
1 public ClassPathResource(String path, ClasslLoader

classLoader) {
Assert.notNull(path, "Path must not be null");
String pathToUse = StringUtils.cleanPath(path);
if (pathToUse.startsWith("/")) {
pathToUse = pathToUse.substring(1);
}
this.path = pathToUse;
this.classLoader = (classLoader != null ? classLoader :
ClassUtils.getDefaultClassLoader());

® NG e W

9}
@Override
public URL getURL() throws IOException {
URL url = this.classLoader.getResource(this.path);
if (url == null) {
throw new FileNotFoundException(this.path +
be resolved to URL because it does not exist");

"cannot

15 }
return url;
17 3}

Listing 3: Simplified code snippet for CVE-2018-9159.

The marked distinction between these patterns highlights the
need for SAST tools to excel in analyzing real-world code, especially
when dealing with object interactions and method calls. While the
OWASP Benchmark is useful for basic testing, it lacks the com-
plexity present in real-world scenarios. Thus, using a real-world
benchmark is vital for evaluating the practical effectiveness of tools.

® C3: Hard to be detected by SAST (14.5%). In this case, we
found that there are 24 CVEs difficult for SAST to detect. For ex-
ample, CVE-2014-3651 [61] is a vulnerability related to Uncontrolled
Resource Consumption (CWE-400). However, SAST typically has
limited utility in recognizing resource exhaustion problems, since
determining boundary values on integers requires a strong capacity
in propagating boundary value information across any control flow
units including loops. Moreover, in addition to certain practical
restrictions, there exists a theoretical limit when inferring based
on the undecidability of SAST [47]. For instance, invariants and
post-conditions are supposed to be deduced even for a loop.

Finding 5: Over 76.9% overlooked CVEs are caused by insuffi-
cient support of these tools, especially those mapped to CWE-22,
CWE-502. While 14.5% are hard for SAST to detect, including
those related to checking boundary value issues (e.g., CWE-400).

3.3 RQ3: Consistency Analysis

3.3.1 Setup. Inspired by findings on the Java CVE Benchmark as
shown in RQ1, we further constructed two consistency analyses:
(1) the consistency of detected CVEs among the tools, and (2) the
consistency of detected CVEs between tools actually detect and
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Horusec SBWESB

CodeQL 2 Semgrep

Figure 8: Tools combination in Sy;_c.

what they claim to support. For the latter task, we try to explore
whether these tools “keep their promises” based on the mapping
results of detecting rules and CVEs. To weaken the impacts of CVEs
that are hard for SAST to detect (C3 in Section 3.2.2), we place the
scope on those CVEs that SAST technically has the ability to detect.

3.3.2  Results. The fact is that the number of detected CVEs in each
CWE Class varies for each tool, as displayed in Figure 7.
Consistency among the tools. As indicated in Figure 8, there is
no CVE that was detected simultaneously even by the four best-
performing tools, which reflects these tools have different focuses.
By comparing the detected vulnerabilities by all tools, we found that
11 unique CVEs are detected only by Horusec, with 11 and 4 ones
only detected by SBwFSB, and Semgrep respectively. Specifically,
the most detected CVEs by Horusec are in CWE-664, especially
those related to CWE-611. Meanwhile, the most detected CVEs
by SBWFSB are in CWE-707, including CWE-20. While CodeQL
detected most CVEs related to CWE-693, e.g., the use of a broken
or risky cryptography algorithm (CWE-327). However, there are 19
(39.6%) certain CVEs being detected by no less than two tools, such
as CVE-2018-17187 (CWE-295), CVE-2018-20318 (CWE-611), and
CVE-2018-20227 (CWE-22), etc. It is observed that these CVEs’ pat-
terns are easy for SAST to detect. For instance, CVE-2018-17187 [63],
a vulnerability found in The Apache Qpid Proton-J transport 3], is
related to Improper Certificate Validation, which even syntax-based
tools can hit by searching for well-known dangerous sinks such as
X509TrustManager, and checkClientTrusted.

Besides, although SBwFSB and CodeQL detected 3 CVEs related
to CWE-22, we found that CodeQL even reported a more precise
vulnerability type: Path Traversal: ‘\\..\filename’ (CWE-29) for CVE-
2018-20227 [64]. Specifically, there are 20 rules for detecting related
vulnerabilities covering both absolute path traversal and relative
path traversal, including {CWE-22, CWE-23, CWE-29, CWE-36}, etc.
It unveils that CodeQL has more complete coverage and fined
granularity on path-traversal vulnerabilities.

Since none of the single tools performs well on the Java CVE
Benchmark, and there are different focuses among tools, we try
to analyze the effectiveness improvement by combining multiple
SAST tools. Here, we selected and combined the SAST tools with
the most CVEs found. A CVE is thereby considered found if at
least one tool was able to detect it. As the combination of tools
can also result in an increase in false positives, we selected those
that contain the fewest SAST tools and also output the fewest
false positives. The best combination of the 4 tools is {CodeQL,
Horusec, SBWFSB, Semgrep}, which can cover 45 unique CVEs
as shown in Figure 8. However, the CVE_R reaches 27.3% (45/165)
and CVE_Rpqsch at 66.7% (30/45), which is an improvement of only
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Figure 9: Consistency between the detected CVEs and those
claimed to be supported by each tool.

14.6% but 38.1% increase in false positives compared with Horusec.
For a combination of three tools, the best one is {CodeQL, Horusec,
SBwFSB}, with CVE_R at 24.8% and CVE_R, g, at 63.4%.

Finding 6: The combination of tools can improve vulnerability
detection (45/165, 27.3%) but is not high as expected, which
still fails to detect over 70% real-world vulnerabilities, with an
approximate cost of a 63.4-66.7% increase in false positives.

Consistency between detected and claimed by each tool. As
revealed in Table 2, by mapping their rules to CWE-1000, each tool
is able to support a wide range of vulnerabilities but still misses
some CWE Classes. In detail, CVEs belonging to CWE-{682, 697, 703,
710} are less supported by tools than those of the other CWE Classes,
although CodeQL implements 204 rules supporting CWE-710. It
unveils that it is generally consistent with the most detected CWE
Classes, i.e., CWE-{664, 693, 707} as mentioned in Section 3.2.2.

However, vulnerabilities related to CWE-682 are only supported
by CodeQL, while CodeQL and Contrast claim to support those
belonging to CWE-697. These two classes did not appear in our
benchmarking experiment, so we are not able to analyze their
consistency. When it comes to the two CWE Classes, they con-
cern vulnerabilities related to incorrect calculation and incorrect
comparison, respectively. Through our analysis, we observed these
vulnerabilities are only caused by security-critical calculations/com-
parisons, most likely causing security-unrelated issues including
code smell, etc. Therefore, the influence of the lack of real-world
vulnerabilities under the two CWE Classes has been weakened.

As unveiled in Figure 9, there is much over-statement by
these tools. Specifically, these tools are generally over-claimed
to support 90.5% vulnerabilities than their actual capacity in our
real-world benchmark. It indicates that potential users should select
tools cautiously, instead of only relying on tools’ claims. Even the
best performing tool, Horusec, overstates that 80.4% of CVEs can
be detected by its support, whereas actually they are not. Moreover,
CodeQL has the most default detecting rules (1,065), with support
for unique 196 CWE Weaknesses, but it only detected 7.9% CVEs
of those claimed to support. However, for specific CWE Classes,
Horusec owns 40.4% (59/146) rules related to CWE-693, especially
for CWE-295 (13), and CWE-798 (28), since it is integrated with
GitLeaks. As a result, it also detected 20% CWE-693 related vul-
nerabilities, including CVE-2013-2172, which is caused by an XML
signature cryptographic issue. But SBwFSB detected none of the re-
lated CVEs although owning (31/152) rules belonging to CWE-693.
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Figure 10: Average performance of SAST tools.

Finding 7: These tools are generally over-stated in their ca-
pacity for vulnerability detection. Specifically, there are over
90% CVEs failing to be detected although they are claimed to be
supported. Especially Contrast, it over-claims to support 99.1%
(112/113) CVEs in the Java CVE Benchmark.

3.4 RQ4: Performance Analysis

3.4.1 Setup. (1) We first collected Java open-source programs
from the repositories published in the package manager including
Maven [29] since they are more likely to be packaged successfully.
We got 3,500 programs as the initial list. (2) We then selected repre-
sentative programs by setting two sub-criteria: @ each program’s
package should be relied on by at least one package, and @ there
exist new packages relying on them within the last three years.
Finally, we obtained 1,049 programs that can be packaged, of which
the versions are all up-to-date till August 2022. To ensure robustness
and consider potential infrastructure variability, we performed each
performance measurement three times for each tool. The reported
results represent the average of these trials.

3.4.2 Results. We analyzed their runtime performance based on
the lines of code (LoC) of the programs.

Performance analysis. Figure 10 shows that the required time
by these tools increases as LoC increases. Specifically, the perfor-
mance does not vary considerably when LoC is less than 50k, but it
increases significantly above 50k, particularly for CodeQL. Insider
is the fastest among the tools studied, requiring on average less
than 10 seconds when LoC is no more than 50k, and about 43.9
seconds to scan even for programs over 100k LoC. It is because
Insider is a syntax-based SAST tool, by comparing the source code
directly against the pre-defined keywords. Contrast is also efficient,
surpassing Insider as the fastest tool when LoC is greater than 20k
since its input must be a jar or war file of the Java programs, and
the scan is performed by uploading the jar or war file to a cloud
server. CodeQL requires more time than the other 6 tools when
LoC is over 50k since it involves the aforementioned two steps:
(1) first generates the codebase based on the given program; (2)
then performs semantic analysis involving DFA and CFA on the
codebase with queries. Moreover, some queries take a long time to
scan, such as “Taint Path” checking.
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Finding 8: The analysis time increases sharply on programs
over 50k LoC. Insider and Contrast are the fastest, while Sem-
grep and CodeQL require the longest time to finish the scan,
with an average of 267s, and 193s, respectively.

Effectiveness vs. performance. Syntax-based tools (Insider, Ho-
rusec) generally run faster than semantic-based ones (CodeQL,
SBwFSB, SonarQube, and Semgrep), which coincides with our afore-
mentioned assumption. Horusec is the slowest syntax-based tool,
which generally takes longer than SonarQube to complete a scan.
In particular, it takes an average of 83 seconds to complete a scan
when the LoC is less than 50k, and 120 seconds when the LoC is
over 50k. It is considered since (1) Horusec needs to copy the folder
of programs to prepare for the scan, (2) integrates with various
security tools including GitLeaks, Trivy, and OWASP Dependency-
Check, and (3) is equipped with more complex detecting patterns
than Insider. Meanwhile, Semgrep takes more time than others on
each program when LoC is no more than 50k, generally taking 267
seconds on average. Interestingly, it is not affected much by the
program size, with an average scan time of 230 seconds on LoC
less than 500, while on LoC of 10k-15k, it takes an average of 274
seconds to complete the scan. Although both Semgrep and CodeQL
perform semantic-based analysis when scanning, the performance
of Semgrep was not influenced by LoC. We summarize the two
reasons: (1) besides a combination of syntax analysis and semantic
analysis, there are also some trade-offs between detecting capacity
and scan speed in Semgrep, including limited intraprocedural DFA,
no pointer or shape analysis, and individual elements in arrays
or other data structures are not tracked, etc. It also results in the
aforementioned limited effectiveness in vulnerability detection in
Section 3.1.2. (2) Semgrep takes an optimization called “Single-file
analysis” that directly links scanning with the number of rules, in-
dependent of LoC. Specifically, Semgrep slices and runs single files
in a given program, which also deprives it of the ability to detect cer-
tain complex inter-procedural issues. These insights could guide the
development and refactoring of SAST tools to handle continuously
updated rules and increasingly complex software implementations,
especially for those with over 100k LoC.

Finding 9: There is a trade-off between semantic-based analysis
and the performance within Semgrep, which contributes to its
scanning performance well. Meanwhile, its deployed file-slicing
technology is considered useful when analyzing large programs.

4 DISCUSSION

4.1 Lessons Learned

4.1.1  For Java SAST Developers. (1) Improve effectiveness with effi-
cient rules. Since detecting capacity is the foundation of SAST tools,
developers should first ensure their effectiveness. © Implement
rules by extracting exact semantic patterns of vulnerabilities, e.g.,
to detect CWE-502 vulnerabilities, it is not enough to only search
for common sinks such as readObject(), DFA and CFA should
also be used to trace the tainted path (Section 3.2.2). @ Tools should
excel in analyzing real-world code. This requires developers to ob-
serve and summarize the features of real-world vulnerabilities when
designing rules, e.g., tools should be enhanced by analyzing vulner-
abilities with object interactions and method calls (Section 3.2.2).

930

Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

(2) Improve the scalability on large programs. Since users would
not consider a time-consuming SAST tool even though it could hit
some vulnerabilities, developers should consider the performance
when scanning large programs, e.g., the “single-file” analysis in
Semgrep would be a useful inspiration (Section 3.4.2).

4.1.2  For Java SAST Researchers. (1) A unified mapping reference is
essential. As mentioned in Section 2.3, it is desirable to use publicly
available references such as CWE to map detecting rules and vulner-
abilities, which would facilitate the evaluation of the effectiveness
of SAST tools for various vulnerability types and further gives di-
rections for improvement. (2) Call for a more comprehensive and
systematic real-world benchmark. To better understand the actual
effectiveness of tools, there is a need for constructing a real-world
benchmark containing diverse vulnerability types according to ex-
isting references such as CWE. Despite our efforts to include as
many CVEs as possible, the benchmark could be further diversi-
fied by incorporating more vulnerability types, particularly those
belonging to CWE-682 and CWE-697.

4.1.3  For Java SAST Users. (1) Select tools according to different
application scenarios. © As mentioned in Section 3.3.2, Horusec per-
forms better on detecting vulnerabilities related to CWE-611, with
CodeQL better on CWE-327 and CWE-22, while SBWFSB outper-
forms on those related to CWE-20. @ Users are also recommended
to choose different tools depending on various phases in SDLC,
e.g., during the implementation phase of large programs, faster
tools such as Semgrep would be better since the performance is
not limited by the size of the program and not requiring the pro-
gram to be compilable (Section 3.4.2). While for major phases of
the SDLC, it may be necessary to choose tools that scan compre-
hensively and efficiently such as Horusec, which is more effective
than others although using syntax-based analysis. (2) Call for use
of tools combination, and even other vulnerability detection tools. In
practice, we generally recommend using a combination of multiple
SAST tools, even better also involving different types of tools such
as SCA tools, to facilitate as much as possible shifting-left secu-
rity during SDLC, e.g., Horusec integrates OWASP Dependency
Check in it to detect vulnerable dependencies used (Section 3.1.2).
(3) Disable rules that are more likely labeled as false positives. As
mentioned in Section 3.1.2, this strategy helps triage through issues
reported since certain issue types are more frequently labeled as
false positives than others on a specific tool.

4.2 Threats to Validity

4.2.1 External Validity. (1) Our study’s generalizability is the pri-
mary external threat. However, we have ensured diversity in our
tool selection and comprehensiveness in our dataset to enhance the
relevance of our findings. (2) Another threat relates to our SAST tool
selection when focusing on “security-related” tools in Section 2.1.
To mitigate this, we selected these tools systematically based on
their documentation and proven ability to detect vulnerabilities
in the OWASP Benchmark. This not only enabled us to compare
tool effectiveness across synthetic and real-world benchmarks but
also ensured a fair comparison across tools. Moreover, we required
tools to have well-documented rules. While this requirement is
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crucial for our analysis approach and consistency analysis (RQ3),
we acknowledge that it may limit the variety of tools studied.

4.2.2  Internal Validity. (1) The first threat pertains to the mapping
of rules to CWE. Since the studied tools have mapped their own
rules to CWE Weaknesses except for SpotBugs, aiding our further
mapping to CWE Classes. For SpotBugs, which lacks such mapping,
we mitigated this threat by conducting a systematic, three-round
mapping process involving three co-authors to minimize subjec-
tivity. (2) Another threat is the validation of vulnerabilities in our
benchmark. To mitigate this, we engaged three security experts
from our industry partner in a rigorous cross-validation process
(Section 2.2.2). This ensured the quality of our benchmark. (3) The
last threat concerns the presence of undetected vulnerabilities in
the Java CVE Benchmark. However, we focused on whether the
selected tools could find known and existing vulnerabilities, so it is
feasible to draw conclusions about their effectiveness.

5 RELATED WORK

5.1 Studies of SAST Tools

There are many existing studies evaluating SAST tools [2, 5, 7, 10,
26, 40, 41, 45, 50, 51, 58, 80, 98, 100, 101].

Most studies evaluating Java SAST tools use either synthetic
benchmarks [2, 5, 49, 58] or real-world benchmarks that are lim-
ited in size and/or vulnerability types [40, 46, 97]. For instance, the
benchmarks used in [2, 5, 49, 58] are synthetic and only consider
partial vulnerability types, which could hinder a more compre-
hensive conclusion. While Kaur et al. [46] compared two SAST
tools for Java on a real-world benchmark (Apache tomcat dataset),
the vulnerability types of their benchmark are limited, i.e., only
involving 5 CWE weaknesses, and they only evaluated the tools’
false negatives. Similarly, Goseva-Popstojanova et al. [40] evalu-
ated a commercial Java SAST tool using Tomcat, which contains 32
vulnerabilities grouped into only 4 CWE weaknesses. They consid-
ered the effectiveness of tools and their combination but without
analysis of their rules mapping or efficiency. Meanwhile, Thung
et al. [97] conducted an analysis of the false negatives of five Java
SAST tools against three open-source programs over eight years
ago. Their findings, which align with our study, revealed that the
tools under examination exhibited weaknesses in detecting real-
world vulnerabilities. However, their study was limited in terms
of the number of tools evaluated and the range of vulnerability
types included in their benchmarks. In contrast, our work provides
a comprehensive evaluation of Java SAST tools, considering both
synthetic and real-world benchmarks, and multiple evaluation per-
spectives including effectiveness, consistency, and efficiency. This
distinguishes our work from previous studies and provides a more
holistic understanding of the capabilities of Java SAST tools.

Several studies have evaluated SAST tools in other research areas,
such as Android [10-12, 26, 52, 55, 82, 84, 96], C/C++ [1, 23, 50, 106],
JavaScript [7], and PHP [60]. For instance, Chen et al. [10] eval-
uated 4 Android SAST tools on 2,157 security weaknesses of 693
banking apps and proposed a tool named AUSERA to identify data-
related weaknesses. Pauck et al. [82] conducted an evaluation to

explore whether Android taint analysis tools keep their promises,
and proposed ReproDroid, a framework allowing accurate compar-

ison. Mordahl et al. [55] explored the complexities of configuration
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spaces in Android static taint analysis tools. Similarly, studies such
as [50] and [7] have included various real-world vulnerabilities to
evaluate SAST tools for C/C++ and JavaScript, respectively. How-
ever, their results are not necessarily transferable to Java SAST
tools due to the different language constructs. Yet, there is a lack of
similar efforts in evaluating SAST tools for Java, particularly with
real-world vulnerabilities. This gap in the literature underscores
the novelty and importance of our work.

In summary, our work distinguishes it from the state of the art in
terms of the considered (1) programming languages (Java SAST
tools), (2) benchmark types and diversity of vulnerabilities
(synthetic plus the largest real-world vulnerabilities), (3) evalu-
ation methodology (mapping detecting rules and ground truth
to CWE hierarchy), (4) detection code granularity (vulnerable
file-level and method-level), and (5) evaluation perspectives (rules
coverage, effectiveness, consistency among tools’ focuses as well
as their over-statements, and runtime performance analysis).

5.2 Studies of Other Analysis Tools

Some studies have been conducted on quality assurance tools, with
a primary focus on code-quality issues [41, 48, 51, 98, 100]. For in-
stance, Liu et al. [51] compared 6 Java quality assurance tools with
1,425 code-quality bugs and analyzed the effectiveness of bug warn-
ings. Lenarduzzi et al. [48] performed a study of six tools including
SonarQube, with a primary focus on syntax, design, and bad prac-
tices. They conducted an analysis of 47 Java projects, assessing the
agreement and precision of the tools. Their study offers valuable
insights into the overall capabilities of these tools, particularly in
identifying low-quality code and improving it through the evalu-
ation of 151 code smells. Contrary to the aforementioned studies,
our research specifically concentrates on vulnerability detection,
providing a more detailed analysis of SAST tools.

6 CONCLUSION

In this paper, we conducted a comprehensive study on seven SAST
tools based on OWASP Benchmark and our constructed real-world
benchmark, by evaluating them from effectiveness, consistency,
and runtime performance analysis. The comparison and evaluation
show that their detection capacity remained lower than expected.
Many useful findings were unveiled to facilitate this important
research direction, specifically, our work provides actionable guid-
ance on SAST tool development, improvement, and selection for
SAST developers, researchers, and potential users.

7 DATA AVAILABILITY

We have released all evaluation data and source code [102].

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of
China (2021ZD0114501), China Scholarship Council (202206140052,
202106 140088), and National Research Foundation, Singapore, and
Cyber Security Agency under its National Cybersecurity R&D Pro-
gramme (NCRP25-P04-TAICeN). Any opinions, findings and con-
clusions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of the National Research
Foundation, Singapore and Cyber Security Agency of Singapore.



ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

REFERENCES

[1] Bushra Aloraini, Meiyappan Nagappan, Daniel M. German, Shinpei Hayashi,

and Yoshiki Higo. 2019. An empirical study of security warnings from static
application security testing tools. Journal of Systems and Software 158 (2019),
110427. https://doi.org/10.1016/j.jss.2019.110427

Midya Alqaradaghi, Gregory Morse, and Tamas Kozsik. 2022. Detecting security
vulnerabilities with static analysis - A case study. Pollack Periodica 17, 2 (2022),
1-7. https://doi.org/10.1556/606.2021.00454

Apache. 2023. Home - Apache Qpid. https://qpid.apache.org/index.html. (Ac-
cessed on 31/01/2023).

Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
press.

Sindre Beba and Magnus Melseth Karlsen. 2019. Implementation analysis of
open-source Static analysis tools for detecting security vulnerabilities. Master’s
thesis. NTNU.

Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro, and Marco
Vieira. 2019. Understanding How to Use Static Analysis Tools for Detecting
Cryptography Misuse in Software. IEEE Transactions on Reliability 68, 4 (2019),
1384-1403. https://doi.org/10.1109/TR.2019.2937214

Tiago Brito, Mafalda Ferreira, Miguel Monteiro, Pedro Lopes, Miguel Barros,
José Fragoso Santos, and Nuno Santos. 2023. Study of JavaScript Static Anal-
ysis Tools for Vulnerability Detection in Node. js Packages. arXiv preprint
arXiv:2301.05097 (2023).

Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robertson, and
Tim Leek. 2021. Evaluating Synthetic Bugs. In Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security (Virtual Event, Hong
Kong) (ASIA CCS °21). Association for Computing Machinery, New York, NY,
USA, 716-730. https://doi.org/10.1145/3433210.3453096

Checkstyle. 2022. checkstyle - Checkstyle 10.6.0. https://checkstyle.sourceforge.
io/. (Accessed on 31/01/2023).

Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,
Yang Liu, and Lihua Xu. 2020. An empirical assessment of security risks of
global Android banking apps. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 1310-1322.

Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, and
Lihua Xu. 2018. Are mobile banking apps secure? what can be improved?. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 797-802.
Sen Chen, Yuxin Zhang, Lingling Fan, Jiaming Li, and Yang Liu. 2022. Ausera:
Automated security vulnerability detection for Android apps. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering.
1-5.

CodeQL. 2022. CodeQL. https://codeql.github.com/docs/codeql-overview/
about-codeql/ (Accessed on 31/01/2023).

MITRE corporation. 2023. Common Vulnerabilities and Exposures. https:
//cve.mitre.org/. (Accessed on 31/01/2023).

Ctags. 2023. Universal Ctags. https://ctags.io/. (Accessed on 31/01/2023).
CVSS V2. 2023. CVSS v2 Complete Documentation. https://www.first.org/cvss/
v2/guide. (Accessed on 16/06/2023).

CVSS V3. 2023. CVSS v3.0 User Guide. https://www.first.org/cvss/v3.0/user-
guide. (Accessed on 16/06/2023).

CWE. 2022. CVE-CWE mapping guidance. https://cwe.mitre.org/documents/
cwe_usage/guidance.html (Accessed on 31/01/2023).

CWE. 2022. CWE-1000: Research Concepts.  https://cwe.mitre.org/data/
definitions/1000.html (Accessed on 31/01/2023).

CWE. 2022. CWE-Compatible Products and Services. https://cwe.mitre.org/
compatible/compatible.html (Accessed on 31/01/2023).

CWE. 2023. CWE-View - CWE Glossary. https://cwe.mitre.org/documents/
glossary/index.html#View. (Accessed on 31/01/2023).

CWE. 2023. Pillar WeaknessCWE Glossary. https://cwe.mitre.org/documents/
glossary/index.html. (Accessed on 31/01/2023).

José D’Abruzzo Pereira and Marco Vieira. 2020. On the Use of Open-Source
C/C++ Static Analysis Tools in Large Projects. In 2020 16th European Dependable
Computing Conference (EDCC). 97-102.

Debian. 2023. Debian — The Universal Operating System. https://www.debian.
org/. (Accessed on 31/01/2023).

Common Weakness Enumeration. 2022. Common Weakness Enumeration.
https://cwe.mitre.org/index.html (Accessed on 31/01/2023).

Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In Proceedings of the 40th International Conference on Software
Engineering. 408-419.

FasterXML. 2020. jackson-dataformats-binary. https://mvnrepository.com/
artifact/com.fasterxml jackson.dataformat/jackson-dataformats-binary. (Ac-
cessed on 31/01/2023).

Forum of Incident Response and Security Teams. 2023. Common Vulnerability
Scoring System SIG. https://www.first.org/cvss/. (Accessed on 12/06/2023).

[29]

[30

[31]
[32]
[33]
[34]

[35

[36

[37
[38
[39

[40]

[41]

[42

[43

[44

[45

[46

[47

[48

[49]

[50

[51

[52

[53

[54
[55

[56

Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

The Apache Software Foundation. 2023. Maven — Welcome to Apache Maven.
https://maven.apache.org/. (Accessed on 31/01/2023).

The OWASP Foundation. 2020. OWASP-Top-Ten-Benchmark, 2020. https:
//github.com/jrbermh/OWASP-Top-Ten-Benchmark (Accessed on 31/01/2023).
The OWASP Foundation. 2022. OWASP Benchmark. https://owasp.org/www-
project-benchmark/ (Accessed on 31/01/2023).

The OWASP Foundation. 2023. OWASP Dependency-Check. https://owasp.org/
www-project-dependency-check/. (Accessed on 31/01/2023).

The OWASP Foundation. 2023. Software Component Analysis. https://owasp.
org/www-community/Component_Analysis. (Accessed on 31/01/2023).
GitHub. 2022. Awesome static analysis. https://github.com/mre/awesome-
static-analysis#multiple-languages-1 (Accessed on 22/08/2022).

GitHub. 2022. GitHub-analysis-tools-dev. https://github.com/analysis-tools-
dev/static-analysis#java (Accessed on 22/08/2022).

GitHub. 2023. GitHub code scanning. https://github.blog/2022-08-15-the-next-
step-for-lgtm-com-github-code-scanning/. (Accessed on 31/01/2023).

GitHub. 2023. Gitleaks. https://gitleaks.io/. (Accessed on 31/01/2023).

Google. 2022. Error Prone. https://errorprone.info/. (Accessed on 31/01/2023).
Google. 2023. Google-java-format. https://github.com/google/google-java-
format. (Accessed on 31/01/2023).

Katerina Goseva-Popstojanova and Andrei Perhinschi. 2015. On the capability of
static code analysis to detect security vulnerabilities. Information and Software
Technology 68 (2015), 18-33. https://doi.org/10.1016/j.infsof.2015.08.002
Andrew Habib and Michael Pradel. 2018. How Many of All Bugs Do We Find? A
Study of Static Bug Detectors. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (Montpellier, France) (ASE 2018).
Association for Computing Machinery, New York, NY, USA, 317-328. https:
//doi.org/10.1145/3238147.3238213

HCL. 2023. HCL AppScan CodeSweep. https://marketplace.visualstudio.
com/items?itemName=HCLTechnologies.hclappscancodesweep. (Accessed
on 31/01/2023).

Jerénimo Hernandez-Gonzalez, Daniel Rodriguez, Inaki Inza, Rachel Harrison,
and Jose A Lozano. 2018. Learning to classify software defects from crowds: a
novel approach. Applied Soft Computing 62 (2018), 579-591.

Insidersec. 2022. Insider. https://github.com/insidersec/insider (Accessed on
31/01/2023).

Hong Jin Kang, Khai Loong Aw, and David Lo. 2022. Detecting False Alarms
from Automatic Static Analysis Tools: How Far Are We?. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE °22). Association for Computing Machinery, New York, NY, USA, 698-709.
Arvinder Kaur and Ruchikaa Nayyar. 2020. A Comparative Study of Static
Code Analysis tools for Vulnerability Detection in C/C++ and JAVA Source
Code. Procedia Computer Science 171 (2020), 2023-2029. Third International
Conference on Computing and Network Communications (CoCoNet’19).
William Landi. 1992. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems (LOPLAS) 1, 4 (1992), 323-337.

Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimaki, Savanna Lujan, and
Fabio Palomba. 2023. A critical comparison on six static analysis tools: Detection,
agreement, and precision. Journal of Systems and Software 198 (2023), 111575.
Jingyue Li, Sindre Beba, and Magnus Melseth Karlsen. 2019. Evaluation of
open-source IDE plugins for detecting security vulnerabilities. In Proceedings of
the Evaluation and Assessment on Software Engineering. 200-209.

Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An Em-
pirical Study on the Effectiveness of Static C Code Analyzers for Vulnera-
bility Detection. In Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022).
Association for Computing Machinery, New York, NY, USA, 544-555. https:
//doi.org/10.1145/3533767.3534380

Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming
Nie, Yang Liu, and Yixiang Chen. 2023. A Comprehensive Study on Quality
Assurance Tools for Java. In Proceedings of the 32st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Seattle, USA) (ISSTA 2023). Associ-
ation for Computing Machinery, New York, NY, USA.

Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko,
Martin Mory, Eric Bodden, Ben Hermann, and Fabio Massacci. 2022. Taint-
Bench: Automatic real-world malware benchmarking of Android taint analyses.
Empirical Software Engineering 27 (2022), 1-41.

Maven. 2023. Jackson Databind. https://mvnrepository.com/artifact/com.
fasterxml.jackson.core/jackson-databind. (Accessed on 16/06/2023).

Meta. 2023. Infer Static Analyzer. https://fbinfer.com/. (Accessed on 1/06/2023).
Austin Mordahl and Shiyi Wei. 2021. The impact of tool configuration spaces on
the evaluation of configurable taint analysis for android. In Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
466-477.

Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. 2022. A Large-Scale
Study of Usability Criteria Addressed by Static Analysis Tools. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New
York, NY, USA, 532-543. https://doi.org/10.1145/3533767.3534374


https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1556/606.2021.00454
https://qpid.apache.org/index.html
https://doi.org/10.1109/TR.2019.2937214
https://doi.org/10.1145/3433210.3453096
https://checkstyle.sourceforge.io/
https://checkstyle.sourceforge.io/
https://codeql.github.com/docs/codeql-overview/about-codeql/
https://codeql.github.com/docs/codeql-overview/about-codeql/
https://cve.mitre.org/
https://cve.mitre.org/
https://ctags.io/
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v3.0/user-guide
https://www.first.org/cvss/v3.0/user-guide
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/compatible/compatible.html
https://cwe.mitre.org/compatible/compatible.html
https://cwe.mitre.org/documents/glossary/index.html#View
https://cwe.mitre.org/documents/glossary/index.html#View
https://cwe.mitre.org/documents/glossary/index.html
https://cwe.mitre.org/documents/glossary/index.html
https://www.debian.org/
https://www.debian.org/
https://cwe.mitre.org/index.html
https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/jackson-dataformats-binary
https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/jackson-dataformats-binary
https://www.first.org/cvss/
https://maven.apache.org/
https://github.com/jrbermh/OWASP-Top-Ten-Benchmark
https://github.com/jrbermh/OWASP-Top-Ten-Benchmark
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-community/Component_Analysis
https://owasp.org/www-community/Component_Analysis
https://github.com/mre/awesome-static-analysis#multiple-languages-1
https://github.com/mre/awesome-static-analysis#multiple-languages-1
https://github.com/analysis-tools-dev/static-analysis#java
https://github.com/analysis-tools-dev/static-analysis#java
https://github.blog/2022-08-15-the-next-step-for-lgtm-com-github-code-scanning/
https://github.blog/2022-08-15-the-next-step-for-lgtm-com-github-code-scanning/
https://gitleaks.io/
https://errorprone.info/
https://github.com/google/google-java-format
https://github.com/google/google-java-format
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://marketplace.visualstudio.com/items?itemName=HCLTechnologies.hclappscancodesweep
https://marketplace.visualstudio.com/items?itemName=HCLTechnologies.hclappscancodesweep
https://github.com/insidersec/insider
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind
https://fbinfer.com/
https://doi.org/10.1145/3533767.3534374

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java

(57]

(58]

[59

(60]

o
&

o
2

3
=

3
&,

=
£

3
it

<
&

=
20,

(81

(82

National Vulnerability Database. 2023. NVD-Home. https://nvd.nist.gov/. (Ac-
cessed on 31/01/2023).

Anh Nguyen-Duc, Manh Viet Do, Quan Luong Hong, Kiem Nguyen Khac, and
Anh Nguyen Quang. 2021. On the adoption of static analysis for software
security assessment-A case study of an open-source e-government project.
Computers & Security 111 (2021), 102470.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. springer.

Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia, and
Marco Vieira. 2019. An empirical study on combining diverse static analysis tools
for web security vulnerabilities based on development scenarios. Computing
101 (2019), 161-185.

NVD. 2014. CVE-2014-3651. https://nvd.nist.gov/vuln/detail/ CVE-2014-3651.
(Accessed on 31/01/2023).
NVD. 2015. CVE-2015-2913.
(Accessed on 31/01/2023).
NVD. 2018. CVE-2018-17187.
(Accessed on 31/01/2023).
NVD. 2018. CVE-2018-20227.
(Accessed on 31/01/2023).
NVD. 2019. CVE-2019-18393.
(Accessed on 31/01/2023).
NVD. 2021. Log4Shell: CVE-2021-44228. https://nvd.nist.gov/vuln/detail/CVE-
2021-44228. (Accessed on 31/01/2023).

NVD. 2022. Spring4Shell: CVE-2022-22965. https://nvd.nist.gov/vuln/detail/cve-
2022-22965. (Accessed on 31/01/2023).

The University of Maryland. 2022. FindBugs. http://findbugs.sourceforge.net/
(Accessed on 31/01/2023).

The University of Maryland. 2022. FindSecurityBugs. https://find-sec-bugs.
github.io/ (Accessed on 31/01/2023).

The University of Maryland. 2022. SpotBugs.
(Accessed on 31/01/2023).

National Institute of Standards and Technology. 2017. Juliet Test Suite. https:
//samate.nist.gov/SARD/test-suites (Accessed on 31/01/2023).

National Institute of Standards and Technology. 2022. NIST: Free for Open
Source Application Security Tools.  https://www.nist.gov/itl/ssd/software-
quality-group/source-code-security-analyzers (Accessed on 22/08/2022).
National Institute of Standards and Technology. 2022. SAMATE: Source Code
Security Analyzers.  https://www.nist.gov/itl/ssd/software-quality-group/
source-code-security-analyzers (Accessed on 22/08/2022).

Opensecurity. 2022. NodeJSScan. https://github.com/ajinabraham/nodejsscan
(Accessed on 31/01/2023).

OpenSSF. 2020. OpenSSF CVE Benchmark.  https://github.com/ossf-cve-
benchmark/ossf-cve-benchmark (Accessed on 31/01/2023).

OpenSSF. 2022. Open Source Security Foundation. https://openssf.org/ (Ac-
cessed on 31/01/2023).

OWASP. 2022. Free for Open Source Application Security Tools. https://owasp.
org/www-community/Free_for_Open_Source_Application_Security Tools (Ac-
cessed on 22/08/2022).

OWASP. 2022. Source Code Analysis Tools. https://owasp.org/www-
community/Source_Code_Analysis_Tools (Accessed on 22/08/2022).
oxsecurity. 2023. Megalinter. https://github.com/oxsecurity/megalinter. (Ac-
cessed on 31/01/2023).

Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini, and Daniela
Soares Cruzes. 2018. Myths and Facts About Static Application Security Testing
Tools: An Action Research at Telenor Digital. In Agile Processes in Software
Engineering and Extreme Programming, Juan Garbajosa, Xiaofeng Wang, and
Ademar Aguiar (Eds.). Springer International Publishing, Cham, 86-103.
Yuanyuan Pan. 2019. Interactive application security testing. In 2019 Inter-
national Conference on Smart Grid and Electrical Automation (ICSGEA). IEEE,
558-561.

Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis
Tools Keep Their Promises?. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, 331-341.

PMD. 2023. PMD. https://pmd.github.io/. (Accessed on 31/01/2023).

Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the analyzers:
Flowdroid/iccta, amandroid, and droidsafe. In Proceedings of the 27th ACM

https://nvd.nist.gov/vuln/detail/CVE-2015-2913
https://nvd.nist.gov/vuln/detail/CVE-2018-17187
https://nvd.nist.gov/vuln/detail/CVE-2018-20227

https://nvd.nist.gov/vuln/detail/CVE-2019-18393

https://spotbugs.github.io/

933

[85
[86

[87

[88

89
90

[o1

[92

[93

[94

[95

[96

[97

[98

[99

[100

[101

[102

[103

[104]
[105]

[106]

[107

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

SIGSOFT International Symposium on Software Testing and Analysis. 176-186.
R2C. 2022. Semgrep. https://www.semgrep.dev/ (Accessed on 31/01/2023).
RedHat. 2018. What is DevSecOps? https://www.redhat.com/en/topics/devops/
what-is-devsecops. (Accessed on 31/01/2023).

RedHat. 2023. Red Hat Bugzilla Main Page. https://bugzilla.redhat.com/. (Ac-
cessed on 31/05/2023).

Reshift. 2023. Reshift. https://www.softwaresecured.com/.
31/01/2023).

Aqua Security. 2023. Trivy. https://trivy.dev/. (Accessed on 31/01/2023).
Contrast Security. 2022. Contrast Security. https://www.contrastsecurity.com/

(Accessed on 31/01/2023).

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1-5.
Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. 2020. Why
Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis Tools
for Security. In Proceedings of the Sixteenth USENIX Conference on Usable Privacy
and Security (SOUPS’20). USENIX Association, USA, Article 13, 18 pages.
SonarSource. 2022. SonarQube. https://www.sonarqube.org/ (Accessed on
31/01/2023).

Spark. 2018. spark/src/main/java/spark/resource/ClassPathResource java at
27236534e90bd2bfe339fd65fe6ddd6a9f0304e1. https://github.com/perwendel/
spark/blob/030e9d00125cbd1ad759668{85488aba1019c668~1/src/main/java/
spark/resource/ClassPathResource. java. (Accessed on 31/01/2023).

Martin R Stytz and Sheila B Banks. 2006. Dynamic software security testing.
IEEE security & privacy 4, 3 (2006), 77-79.

Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong
Su. 2020. Why my app crashes? understanding and benchmarking framework-
specific exceptions of Android apps. IEEE Transactions on Software Engineering
48, 4 (2020), 1115-1137.

Ferdian Thung, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premkumar T
Devanbu. 2015. To what extent could we detect field defects? An extended
empirical study of false negatives in static bug-finding tools. Automated Software
Engineering 22 (2015), 561-602. https://doi.org/10.1007/s10515-014-0169-8
Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-
mar T. Devanbu. 2012. To What Extent Could We Detect Field Defects? An
Empirical Study of False Negatives in Static Bug Finding Tools. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering
(Essen, Germany) (ASE 2012). Association for Computing Machinery, New York,
NY, USA, 50-59. https://doi.org/10.1145/2351676.2351685

TIOBE. 2023. The Java Programming Language-TIOBE. https://www.tiobe.com/
tiobe-index/java/. (Accessed on 31/01/2023).

David A. Tomassi. 2018. Bugs in the Wild: Examining the Effectiveness of Static
Analyzers at Finding Real-World Bugs. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 980-982.
https://doi.org/10.1145/3236024.3275439

Andreas Wagner. and Johannes Sametinger. 2014. Using the Juliet Test Suite
to Compare Static Security Scanners. In Proceedings of the 11th International
Conference on Security and Cryptography - SECRYPT, (ICETE 2014). INSTICC,
SciTePress, 244-252. https://doi.org/10.5220/0005032902440252

Website of This Study. 2023. Comparison and Evaluation on Static Application
Security Testing (SAST) Tools for Java. https://sites.google.com/view/java-
sast-study/home (Accessed on 31/01/2023).

Website of This Study. 2023. Tools Selection. https://sites.google.com/view/java-
sast-study/tool-selection (Accessed on 31/01/2023).

Wikipedia. 2022. List of tools for static code analysis. https://en.wikipedia.org/
wiki/List_of_tools_for_static_code_analysis (Accessed on 22/08/2022).
Wikipedia. 2023. Linter-Wikipedia.  https://en.wikipedia.org/wiki/Lint_
(software). (Accessed on 22/06/2023).

J. Zheng, L. Williams, N. Nagappan, W. Snipes, ].P. Hudepohl, and M.A. Vouk.
2006. On the value of static analysis for fault detection in software. IEEE
Transactions on Software Engineering 32, 4 (2006), 240-253.

Zupit. 2022. Horusec. https://docs.horusec.io/docs/overview/ (Accessed on
31/01/2023).

(Accessed on

Received 2023-02-02; accepted 2023-07-27


https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2014-3651
https://nvd.nist.gov/vuln/detail/CVE-2015-2913
https://nvd.nist.gov/vuln/detail/CVE-2018-17187
https://nvd.nist.gov/vuln/detail/CVE-2018-20227
https://nvd.nist.gov/vuln/detail/CVE-2019-18393
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/cve-2022-22965
https://nvd.nist.gov/vuln/detail/cve-2022-22965
http://findbugs.sourceforge.net/
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
https://spotbugs.github.io/
https://samate.nist.gov/SARD/test-suites
https://samate.nist.gov/SARD/test-suites
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://github.com/ajinabraham/nodejsscan
https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
https://openssf.org/
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://github.com/oxsecurity/megalinter
https://pmd.github.io/
https://www.semgrep.dev/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://bugzilla.redhat.com/
https://www.softwaresecured.com/
https://trivy.dev/
https://www.contrastsecurity.com/
https://www.sonarqube.org/
https://github.com/perwendel/spark/blob/030e9d00125cbd1ad759668f85488aba1019c668~1/src/main/java/spark/resource/ClassPathResource.java
https://github.com/perwendel/spark/blob/030e9d00125cbd1ad759668f85488aba1019c668~1/src/main/java/spark/resource/ClassPathResource.java
https://github.com/perwendel/spark/blob/030e9d00125cbd1ad759668f85488aba1019c668~1/src/main/java/spark/resource/ClassPathResource.java
https://doi.org/10.1007/s10515-014-0169-8
https://doi.org/10.1145/2351676.2351685
https://www.tiobe.com/tiobe-index/java/
https://www.tiobe.com/tiobe-index/java/
https://doi.org/10.1145/3236024.3275439
https://doi.org/10.5220/0005032902440252
https://sites.google.com/view/java-sast-study/home
https://sites.google.com/view/java-sast-study/home
https://sites.google.com/view/java-sast-study/tool-selection
https://sites.google.com/view/java-sast-study/tool-selection
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/Lint_(software)
https://docs.horusec.io/docs/overview/

	Abstract
	1 Introduction
	2 Overview
	2.1 Tool Selection
	2.2 Benchmark Collection
	2.3 Mapping Vulnerability Data in Benchmarks and Detecting Rules of Tools to CWE

	3 Comparison and Evaluation
	3.1 RQ1: Effectiveness Analysis
	3.2 RQ2: Detection Result Dissection
	3.3 RQ3: Consistency Analysis
	3.4 RQ4: Performance Analysis

	4 Discussion
	4.1 Lessons Learned
	4.2 Threats to Validity

	5 Related Work
	5.1 Studies of SAST Tools
	5.2 Studies of Other Analysis Tools

	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

