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ABSTRACT
Static application security testing (SAST) takes a significant role in

the software development life cycle (SDLC). However, it is challeng-

ing to comprehensively evaluate the effectiveness of SAST tools to

determine which is the better one for detecting vulnerabilities. In

this paper, based on well-defined criteria, we first selected seven

free or open-source SAST tools from 161 existing tools for further

evaluation. Owing to the synthetic and newly-constructed real-

world benchmarks, we evaluated and compared these SAST tools

from different and comprehensive perspectives such as effective-

ness, consistency, and performance. While SAST tools perform

well on synthetic benchmarks, our results indicate that only 12.7%

of real-world vulnerabilities can be detected by the selected tools.

Even combining the detection capability of all tools, most vulnera-

bilities (70.9%) remain undetected, especially those beyond resource

control and insufficiently neutralized input/output vulnerabilities.

The fact is that although they have already built the corresponding

detecting rules and integrated them into their capabilities, the de-

tection result still did not meet the expectations. All useful findings

unveiled in our comprehensive study indeed help to provide guid-

ance on tool development, improvement, evaluation, and selection

for developers, researchers, and potential users.
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1 INTRODUCTION
The early detection and handling of vulnerabilities in software code

is a matter of concern for software development. In recent years, se-

curity vulnerabilities such as Log4Shell [66] and Spring4Shell [67]

have raised alarm bells. Researchers have also proposed various

methods to detect software vulnerabilities such as formal verifica-

tion [4], static application security testing (SAST) [59], dynamic

application security testing (DAST) [95], and interactive application

security testing (IAST) [81]. Practically, SAST is the most popular

technology due to its lower cost, faster operation, and stronger

capability to detect bugs or vulnerabilities without executing a pro-

gram. Hence, the development of SAST technology has obviously

evolved, and the number of corresponding tools has rapidly grown

in recent years [13, 44, 68–70, 74, 85, 90, 93, 107].

However, it is still challenging for users to objectively evalu-

ate and select the appropriate SAST tools due to the following

reasons. (1) Firstly, existing studies are mainly conducted on syn-

thetic datasets [2, 58, 80, 101], where vulnerabilities are usually

implemented and injected into programs manually. Compared to
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Figure 1: Overview of our study.

real-world vulnerabilities [8], they are much simpler in design and

easier to be detected. Therefore, it is hard to objectively reflect the

detection capability of tools in real-world programs. OpenSSF [76]

also emphasized the importance of using real-world vulnerability

data to evaluate the effectiveness of SAST tools and developed a

benchmark [75] which contains over 200 CVEs (Common Vulner-

abilities and Exposures) [14]. However, their benchmark only in-

cludes JavaScript and TypeScript CVEs. Some studies have also been

exhibited to evaluate the effectiveness of SAST tools on open-source

programs [1, 46, 97], in which the datasets used are often small in

size and limited in the number and types of contained vulnerabili-

ties. (2) Furthermore, the focus of existing studies [41, 51, 98, 100]

concerns more on quality issues, e.g., code styles, performance,

and bad practices, rather than security vulnerabilities. For example,

Thung et al. [98] performed an evaluation on Java SAST tools, in

which they explored to what extent the Java SAST tools detect real-

world defects on three open-source Java programs, and analyzed

five kinds of defects including code style and bad practices. (3)
Thirdly, specifically for Java SAST tools, the shortage of knowledge

on commonly detected types of vulnerabilities makes researchers

even harder to gain deeper insights into the strengths and weak-

nesses of a given tool. Besides, the consistency of vulnerability

types that actually reported in detection and claimed to support in

documentation is also an interesting research question to explore.

Java is one of the most popular and well-developed program-

ming languages, with a broad scope of application scenarios [99].

However, till now, there is still a lack of effort in evaluating SAST

tools on real-world programs, especially for Java. In a concurrent

work evaluating SAST tools, Lipp et al. [50] focused on SAST tools

for C programs, in which they evaluated the effectiveness of six

tools on 192 real-world vulnerability datasets using 27 open-source

C projects. But the results on C SAST tools may be not feasible

for Java SAST tools because of the different language constructs.

Meanwhile, the corresponding SAST tools can differ in their usage,

and it is a question that how to choose a Java SAST tool that is

suitable for scanning speed or workflow integration besides the

effectiveness of vulnerability detection.

As shown in Figure 1, to bridge these gaps, we evaluated 7 rep-

resentative Java SAST tools filtered from 161 tools. Then, we used

Common Weakness Enumeration (CWE) [25] as a reference to map

the detecting rules of these tools and CVEs contained in our col-

lected benchmark datasets to CWE, and automatically compared

the effectiveness of each tool. We collected 2 types of benchmark

datasets including a synthetic dataset (i.e., OWASP Benchmark) and

a real-world benchmark (i.e., the Java CVE Benchmark). The latter

includes 165 open-source Java programs with 165 unique CVEs.

The dataset covers 37 unique vulnerability types (CWEWeaknesses),
belonging to 8 CWE Classes in CWE-1000 [19]. For this, we eval-
uated the tools’ effectiveness against the 2 benchmarks. Based on

their poor effectiveness on the Java CVE Benchmark, we further dis-

sected the composition of false negatives. Moreover, we performed

a consistency evaluation on the vulnerabilities detected by these

tools between the actually detected ones and what is claimed in the

detecting rules. Finally, we performed a performance analysis on

1,049 representative Java open-source programs.

Our study unveils that the evaluation of SAST tools on synthetic

datasets does not objectively reflect the detection capability of the

tools. In particular, the selected tools overlooked most (87.3%) real-

world vulnerabilities in the Java CVE Benchmark, while they have

been shown to performwell on the OWASP Benchmark. Meanwhile,

over 70% of vulnerabilities still remain undetected when combining

the results of SAST tools, especially those beyond the scope of

CWE-664 and CWE-707. For consistency analysis, we observed that
these tools generally overstate their detection capabilities, even

with 90.5% overstatement on our real dataset. Meanwhile, their

analysis time increases sharply when the line of code (LoC) is over

50k. In particular, Insider [44] and Contrast [90] are the fastest,

while Semgrep [85] and CodeQL [13] require the longest time.

In summary, we made the main contributions as follows:

• We constructed a real-world benchmark containing 165 open-

source Java programs with 165 unique CVEs on the method level,

which is considered the largest real-world vulnerability bench-

mark for Java. It costs 13.5 person-months for the construction.

• To fairly compare the 7 SAST tools’ detecting rules, we mapped

and grouped 1,801 rules of tools studied and vulnerability data in

our 2 benchmarks into CWE Classes, and analyzed the detection

consistency among tools, as well as that between the detected

vulnerability types and those claimed in their detecting rules.

• We conducted a large-scale empirical evaluation of the selected

tools from comprehensive perspectives, including effectiveness,

consistency, and runtime performance. To this end, 43,519 (i.e.,

7 × (2, 740 + 165 × 2 + 1, 049 × 3)) scanning tasks are conducted.

• Based on the evaluation results, we discussed the lessons learned

and detailed the guidance on SAST tool development, improve-

ment, evaluation, and selection for SAST tool developers, re-

searchers, and potential users.

2 OVERVIEW
2.1 Tool Selection
We aim at gathering a representative set of SAST tools since it is

infeasible to give a complete set of all existing tools. Therefore,

we searched tool lists from recent scientific literature [1, 5, 40,

41, 51, 56, 80, 92, 98, 100] and snowballed from them, as they also

recommend further lists. Eventually, we obtained several prominent

websites [34, 35, 72, 73, 77, 78, 104] giving recommendations for

SAST tools. This process resulted in a very substantial set of SAST

tools [103], even after removing duplicates (192 out of 576). We

designed the following criteria to select our evaluation subjects.
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Table 1: Tool profile. Technology: Semantic (data-flow and
control-flow analysis) or Syntactic (pattern-matching within
the code). # Stars indicates GitHub stars.

Tool Technology # Stars Version

CodeQL Semantic 6.1k v2.10.2

Contrast Semantic / 1.0.10

Horusec Syntactic 903 v2.8.0

Insider Syntactic 429 v3.0.0

SBwFSB Semantic 3.1k v4.7.0, v1.12.0

Semgrep Semantic 8.3k v0.108.0

SonarQube Semantic 7.8k v9.5.0, v4.1.0

① Java supported. First, we only included SAST tools that support

Java programs and obtained 161 Java SAST tools in total.

② Free of charge. Second, the Java SAST tools must be free of

charge.While commercial tools are indeed prevalent in the industry,

they often entail substantial costs and do not disclose their internal

rule implementations, thereby posing analytical limitations for our

study. Thus, 54 commercial tools were excluded.

③ Being maintained. Third, we eliminated tools that were no

longer maintained. Specifically, we manually checked whether the

tool’s open-source repository had been active for the last 2 years.

After this step, 20 SAST tools were further removed.

④ Command-line interface (CLI). Moreover, we did not consider

tools that have usage limits or purely operate through a graphical

user interface, as we aim to conduct a large-scale experiment in this

study. Therefore, we excluded 33 tools such as Reshift [88], HCL

AppScan CodeSweep [42], and GitHub Code Scanning [36].

⑤ Security related. We try to select tools that identify generalized

security vulnerabilities, rather than those aimed to detect specific

vulnerabilities or code quality issues such as linters [105]. Initially,

we selected tools that claim they can detect “vulnerabilities”, “secu-

rity issues”, and other similar terms in their documentation. Further-

more, to facilitate the comparison and evaluation of tool effective-

ness between synthetic and real-world benchmarks, it is required

that tools should demonstrate an ability to detect vulnerabilities

in synthetic benchmarks such as the OWASP Benchmark, i.e., be

able to detect at least two vulnerability types. Finally, we excluded

6 tools including Error Prone [38], Facebook Infer [54], Check-

style [9], PMD [83], google-java-format [39], and Mega-Linter [79].

⑥ Well-documented with detecting rules. Note that we intend
to select SAST tools with well-documented detecting rules, which

allows us to analyze the effectiveness of each tool by mapping them

to CWE. Meanwhile, we explore whether the detecting capacity

they claim in the rules is consistent with that in practice. After

applying this criterion, we excluded 41 tools that did not provide

publicly available documentation of their detecting rules.

Based on these criteria, we finally selected 7 tools: CodeQL, Con-

trast Codesec Scan (Contrast), Horusec [107], Insider, SpotBugs [70]

with FindSecurityBugs [69] (SBwFSB), Semgrep, and SonarQube

community edition (SonarQube) [93] (Table 1). We have uploaded

the full candidate SAST tool list [102].

2.2 Benchmark Collection
2.2.1 OWASP Benchmark. For the synthetic dataset selection, we
considered OWASP Benchmark [31], as it is consistently maintained

and updated compared with other synthetic datasets such as the

Juliet Test Suite Java [71] and OWASP Top 10 2020 Benchmark [30].

Although the vulnerabilities within it are synthetic, we can use them

to draw preliminary conclusions about the detection capabilities of

SAST tools. Each case within it has either a genuine, exploitable

vulnerability (1,415 in total) or a non-vulnerable control instance

mimicking a false positive (1,325 in total).

2.2.2 Java CVE Benchmark. In response to OpenSSF’s call for real-

world vulnerability data in SAST tool evaluation, we constructed a

Java CVE Benchmark by involving four steps as follows:

• Java programs collection:We first searched Java open-source

programs with disclosed CVEs and corresponding patch commits

from advisory sources such as NVD [57], Debian [24], and Red

Hat Bugzilla [87], initially obtaining a list of 680 programs.

• Version range extraction and method-level locating: We uti-

lized SZZ [91] to extract the vulnerable version range of programs

affected by each CVE, ensuring accurate identification of affected

versions. Meanwhile, we employed Ctags [15] to locate method-

level information for both vulnerable and patched versions, which

is essential for a detailed analysis of the vulnerabilities.

• Program packaging: Since the tools under evaluation accept

different types of input (e.g., source code and binaries), we further

excluded the programs that failed to be packaged. We finally

obtained 165 package-able programs [102].

• Cross-validating: To ensure the benchmark quality, we engaged

three security experts from our industry partner. They verified

the vulnerability locations identified by our automated process

and cross-validated each other’s work. Each expert thoroughly

reviewed the details provided in the vulnerability and patch in-

formation obtained from advisory sources. After that, they cross-

validated each other’s results. If disagreements arose during the

cross-validation, a majority voting [43] was used to make the

decision. In cases where the votes were evenly split, a discussion

was held to resolve the conflict. The vulnerability was then la-

beled with detailed information such as its location, the affected

versions, and the specific methods where the vulnerabilities and

patches were located.

Finally, we got 165 package-able open-source programs con-

taining 165 unique CVEs, where each program owns a vulnerable

version and a patched version, with the location of vulnerabili-

ties and patches labeled at the method level. The entire process of

collecting the Java CVE Benchmark took us 13.5 person months,

with an additional 3 person months spent on cross-validating the

vulnerability and patch locations. To the best of our knowledge, it

is the largest real-world Java vulnerability benchmark.

2.3 Mapping Vulnerability Data in Benchmarks
and Detecting Rules of Tools to CWE

Since SAST tools use different identifiers for the vulnerability types

they support, e.g., Insider uses CWEs in the reported issues, while

others introduce their own vulnerability identifiers. These different

identifiers make it difficult to automatically determine whether

a SAST tool hits a specific vulnerability type. CWE refers to a

community-developed list of software and hardware weakness

types, including security vulnerabilities, which is also used in CVE
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Table 2: CWE mapped by our benchmarks and each SAST tool.

# Vulnerabilities/Rules # CWEWeaknesses CWE-284 CWE-435 CWE-664 CWE-682 CWE-691 CWE-693 CWE-697 CWE-703 CWE-707 CWE-710

OWASP Benchmark 2,740 11 % % 394 % % 1,042 % % 1,304 %

Java CVE Benchmark 165 37 14 4 102 % 7 15 % 3 31 1

CodeQL 1,065 196 75 3 401 20 117 150 19 28 96 204

Contrast 46 41 5 1 15 % 1 11 1 1 17 1

Horusec 216 47 11 % 40 % 3 59 % 3 24 6

Insider 90 30 4 1 9 % 1 8 % % 6 3

SBwFSB 152 53 6 3 39 % 3 31 % 1 42 3

Semgrep 165 43 6 1 46 % 12 67 % % 21 3

SonarQube 66 37 10 1 21 % % 21 % 1 5 2

CWE-23

TaintedPath PartialPathTraversal Detecting rules

CWE Weaknesses

CWE Classes

CWE-688

CWE-8 CWE-134CWE-22

CWE-664

mapping

mapping

Figure 2: Example of mapping and grouping rules to CWE.

reports [18] and supported by many SAST tools [20]. In addition,

all of these tools have mapped their own rules to CWE in their

documentation or GitHub repository except for SpotBugs,
1
so we

consider it a valid approach by evaluating them according to CWE.

In this study, we selected “CWE-1000: Research Concepts” as

a reference, since it aims at facilitating research into weaknesses,

including inter-dependencies among CWE entries when compared

with the other two CWE Views [21]. Considering that direct map-

ping of rules to CWE Weaknesses poses some hierarchical incon-

sistencies, as shown in Figure 2, which may distinguish the effec-

tiveness of the tools that map rules to different levels. Similarly,

CWE also has hierarchical structure issues [40, 50]. We considered

mapping detecting rules directly to the “Pillar” [22] level (hereafter

denoted by CWE Classes) in CWE-1000 for the purpose of unifying
them to the same level of CWE. Therefore, to enable us to automate

the evaluation of the tools studied, we use CWE as a reference, with

the vulnerability data in the two benchmarks and the tool’s rules

mapped to CWE Classes in CWE-1000, respectively.
Mapping vulnerability data to CWE. Since all of the vulnerabili-
ties in our two benchmarks have been mapped to CWE Weaknesses,
we thereby mapped them to CWE Classes according to CWE-1000.
Mapping detecting rules to CWE. Similarly, since these tools

have mapped their detecting rules to CWE Weaknesses except for
SpotBugs, we only need to map them to CWE Classes according to

the hierarchy of CWE-1000. For SpotBugs, we manually mapped

its rules to both CWE Weaknesses and CWE Classes. This process
involved three co-authors independently performing the mapping.

They consulted the rule documentation and the hierarchy of CWE-

1000 during this process. Any conflicts in mapping results were

resolved through “majority voting”. Finally, we determined the

support for CWE Classes by the tools. A CWE Class was considered
supported by a tool if the rule documentation stated it implemented

a check for at least one CWE Weakness within that class.

1
We obtained the mapping documentation of Contrast from its technical support team.

Table 2 shows each class in CWE-1000 is included/supported

or not (%). The number of corresponding vulnerabilities/rules is

further displayed if included/supported. Totally, 2,740 vulnerabil-

ities included in OWASP Benchmark are grouped into 11 CWE
Weaknesses and 3 CWE Classes, while our real-world benchmark

owns more coverage than it does, i.e., including 37 CWEWeaknesses
grouped into 8 CWE Classes except for CWE-682, and CWE-697.

3 COMPARISON AND EVALUATION
The evaluation aims to answer the following research questions:

• RQ1: Effectiveness analysis. How effective are these SAST

tools in detecting vulnerabilities on OWASP Benchmark and our

constructed Java CVE Benchmark?

• RQ2: Detection result dissection.What are the root causes of

the detection results in RQ1?

• RQ3: Consistency analysis. Are the detection results consis-

tent among these tools in terms of the detected vulnerability

types? Are the detected vulnerability types consistent with what

was claimed in each tool?

• RQ4: Performance analysis. How is the performance of these

tools (i.e., the time cost of detection)?

3.1 RQ1: Effectiveness Analysis
3.1.1 Setup. We evaluated the effectiveness of the 7 tools on the

two benchmarks. For the OWASP Benchmark, we compute Recall,

Precision, and F1-score as the evaluation metrics. For the Java

CVE Benchmark, we calculate the proportion of detected CVEs,

denoted as𝐶𝑉𝐸_𝑅 (
# 𝐷𝑣𝑢𝑙

# 𝐴𝑙𝑙 𝐶𝑉𝐸𝑠 𝑖𝑛 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
), and the proportion of

CVEs still detected in the patched versions, denoted as𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ

(

# (𝐷𝑣𝑢𝑙∩𝐷𝑝𝑎𝑡𝑐ℎ)
# 𝐷𝑣𝑢𝑙

). Here, 𝐷𝑣𝑢𝑙 and 𝐷𝑝𝑎𝑡𝑐ℎ represent the detected

CVEs in the vulnerable and patched versions, respectively. The

latter metric approximates the rate of false positives. Inspired by

previous works [50, 98], we evaluated the real-world detection

capabilities of these tools with respect to file-level andmethod-level,
and divided them into four different scenarios as follows:

• File-level Detection with Any CWE Class (𝑆𝐹−𝐴): A CVE is

considered detected if ≥1 vulnerable file is hit by the tool, regard-
less of the CWE Class reported.

• File-level Detection with Correct CWE Class (𝑆𝐹−𝐶 ): A CVE

is considered detected if ≥1 vulnerable file is hit by the tool, with
the correct CWE Class reported.

• Method-level Detection with Any CWE Class (𝑆𝑀−𝐴): A CVE

is considered detected if ≥1 vulnerable method is hit, regardless

of the CWE Class reported.
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Figure 3: Effectiveness on OWASP Benchmark.
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Figure 4: Number of detected CVEs in different scenarios.

• Method-level Detection with Correct CWE Class (𝑆𝑀−𝐶 ): A
CVE is considered detected if ≥1 vulnerable method is hit with

the correct CWE Class reported.

3.1.2 Results. The overall results on these two benchmarks are

shown in Figure 3 and Figure 4, respectively.

Effectiveness on the OWASP Benchmark. Figure 3 shows that
Contrast and SBwFSB can detect close to all synthetic vulnerabili-

ties, with F1-score 84.4%, and 82.8%, respectively. However, Insider

failed to detect most synthetic vulnerabilities with 23.9% Recall,

9.8% Precision, and 13.9% F1-score. As displayed in Figure 5, the

effectiveness on three CWE Classes varies from tools. However,

synthetic vulnerabilities belonging to CWE-693 are easier detected
by tools, especially those involving insecure cryptographic algo-

rithms or insufficiently random values. While those related to Path
Traversal (CWE-22) and Trust Boundary Violation (CWE-501) are

hardly detected by these tools. In particular, Horusec and Insider

failed to detect all of these two types. For Insider, the number of its

detecting rules is limited, with no strong coverage of diverse Java

vulnerabilities, i.e., 90 in total, with only 9 rules related to CWE-664.
Moreover, Insider has no rule supporting CWE-501 and CWE-22

although claiming to cover the OWASP Top 10. While for Horusec,

CWE-501 is also not supported by its rules. However, we further

noticed that CWE-22 is supported by its rules but not detected.

More specifically, Horusec implements 3 related rules, but all of

them are based on primitive regular expressions which only detect

few related vulnerabilities related to the hard-coded use of either

@javax.ws.rs.PathParam() or @jakarta.ws.rs.PathParam().

Finding 1: SAST tools generally perform well on the synthetic

dataset (i.e., the OWASP Benchmark), especially Contrast and

SBwFSB, which both got an F1-score over 80%, while Insider

showed the lowest detection rate (i.e., 13.9% F1-score), following

SonarQube with an F1-score of 27.0%.

1 from DataFlow :: PathNode source , DataFlow :: PathNode sink ,

2 PathCreation p, Expr e, TaintedPathLocalConfig conf

3 where e = sink.getNode ().asExpr () and e = p.getAnInput ()

and

4 conf.hasFlowPath(source , sink) and not guarded(e)

5 select p, source , sink , "$@ flows to here and is used in a

path.",

6 source.getNode ()

Listing 1: TaintPathLocal.ql in CodeQL.

Effectiveness on the Java CVE Benchmark. As shown in Figure 4,

the effectiveness of the 7 tools is analyzed in the 4 scenarios afore-

mentioned. Note that there may exist some cases in 𝑆𝑀−𝐶 where

some tools hit the true CWE Class of a CVE, but a wrong CWE
Weakness was actually reported. To ensure the accuracy of our re-

sults, we further checked the CWEWeaknesses reported by the tools
in 𝑆𝑀−𝐶 . The corrected results are presented as “Manual Check” in

Figure 4 . Contrary to the effectiveness on OWASP Benchmark, it

displays poor effectiveness on real-world vulnerabilities of these

tools, reflecting that over 85% of CVEs were ignored by selected

tools. Even the top-performing tool (Horusec) achieved a mere

12.7%𝐶𝑉𝐸_𝑅. Although Horusec is a syntax-based tool whose rules

are implemented by regular expressions, it outperforms the three

semantic-based tools (SBwFSB, CodeQL, and Semgrep). This un-

veils that the semantic analysis method is not always more effective

than the less complex syntactic ones when in practice. Moreover,

we observed that Horusec integrated with some other tools (e.g.,

GitLeaks [37] and Trivy [89]). It is worth noting that Horusec also

integrates OWASP Dependency-Check [32] within it, a Software

Composition Analysis (SCA) [33] tool, helping Horusec hit another

49 correct CVEs by scanning the vulnerable TPLs used in programs.

Although it is not a SAST tool, such an approach may inspire us

for detecting more vulnerabilities during DevSecOps [86].

Following Horusec, SBwFSB, and CodeQL detected 17 (10.3%)

and 11 (6.7)% CVEs. Both tools are equipped with data-flow analysis

(DFA) and control-flow analysis (CFA), especially taint analysis. To

detect vulnerabilities, SBwFSB uses resource files to list and store

vulnerable sources and sinks to search taint paths, which can limit

its search scope in practice. CodeQLmodels source code as database

records allowing its queries to search when scanning, which is

considered a stronger technology than SBwFSB. But we found that

the default rules within CodeQL are still simple which limits its

effectiveness when detecting complex vulnerabilities such as CVEs.

For instance, consider a CodeQL rule designed to detect CWE-22

vulnerabilities, as shown in Listing 1. It tracks tainted data from

user input (source) to a file path creation (sink) (L3-4). However,

it fails to detect indirect influences of user input on path creation.

Additionally, it deems a variable as “guarded” if it undergoes any

form of check or sanitization, which may not be sufficient. For

example, simply replacing “../” in user input could not prevent an

attacker from constructing a path traversal string such as “..././..././”.

This inadequate sanitization could still lead to an exploit, which

this default rule would not detect.

Notably, Contrast, themost effective tool according to theOWASP

Benchmark, nearly failed to detect all the CVEs in all 4 scenarios.

Thus, the evaluation using synthetic datasets may yield discrepan-

cies or even opposite conclusions from those on real-world ones.

925



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

36.0%

81.4%

0.0% 0.0%

75.4% 72.9%

0.0%
0%

20%

40%

60%

80%

100%

Recall Precision F1-Score

(a) Effectiveness on CWE-664.

37.4%
32.6%

47.8%

72.8%

90.3% 96.0% 94.8%

0%

20%

40%

60%

80%

100%

Recall precision F1-Score

(b) Effectiveness on CWE-693.

72.7%
77.8%

35.4%

11.8%

70.6% 67.6%

14.0%

0%

20%

40%

60%

80%

100%

Recall Precision F1-Score

(c) Effectiveness on CWE-707.

Figure 5: Effectiveness of each class on OWASP Benchmark.

Table 3: Detection results
according toCVSS severity.

CVSS severity # Detected # Total

High 13 40

Medium 32 120

Low 3 5

40

120

5
158

499

23

High Medium Low

680 Java programs

Java CVE Benchmark

Figure 6: Severity distribution
in the Java CVE Benchmark.

Finding 2: These tools overlook more than 85% of CVEs (false

negatives), although performing well against synthetic bench-

marks. Horusec and SBwFSB perform better than the other

tools, with a 𝐶𝑉𝐸_𝑅 of only 12.7%, and 10.3% respectively.

Effectiveness vs. CVSS severity.We try to explore the relation-

ship between the effectiveness of SAST tools and the severity of

vulnerabilities by leveraging the Common Vulnerability Scoring

System (CVSS) [28] associated with each CVE. Due to the absence

of CVSS V3 [17] for some CVEs, we finally used CVSS V2 [16] for

a fair evaluation. As shown in Figure 6, the severity distribution of

the Java CVE Benchmark aligns with that of the original 680 pro-

grams, suggesting that the distribution of our benchmark does not

significantly skew the results. As outlined in Table 3, SAST tools

detected 60% of low-severity CVEs. For medium-severity CVEs,

the detection ratio dropped to 26.7% (32/120). Interestingly, the

detection ratio for high-severity CVEs was slightly higher at 32.5%.

Meanwhile, we also observed distinct detection patterns within

each severity level. For instance, all four high-severity injection-

related vulnerabilities, which fall under the Improper Neutraliza-
tion (CWE-707) class, were detected. However, no input-validation

issues, also under CWE-707, were detected at this level. The dis-

crepancy in detection rates could be due to the complexity of high-

severity vulnerabilities or the nature of the vulnerability itself. For

instance, injection vulnerabilities, which often involve improper

input handling, might be easier to detect than deserialization vul-

nerabilities, which require complex object processing. Additionally,

only 5% (2/40) of medium-severity Deserialization of Untrusted Data
(CWE-502) vulnerabilities were detected. Out of these, 38 vulnera-

bilities were found in the widely used jackson-databind [53] project,

yet none were detected, highlighting the importance of effective

vulnerability detection in popular software components.

Table 4: Approximate false positives in 𝑆𝐹−𝐶 and 𝑆𝑀−𝐶 .

Tools

𝑆𝐹−𝐶 𝑆𝑀−𝐶
# 𝐷𝑉𝑢𝑙 # (𝐷𝑣𝑢𝑙 ∩ 𝐷𝑝𝑎𝑡𝑐ℎ) # 𝐷𝑉𝑢𝑙 # (𝐷𝑣𝑢𝑙 ∩ 𝐷𝑝𝑎𝑡𝑐ℎ)

CodeQL 15 9 11 5
Contrast 2 2 1 1
Horusec 38 23 21 6
Insider 11 11 4 4
SBwFSB 26 25 17 16
Semgrep 31 26 9 4

SonarQube 12 8 9 5

To analyze approximate false positives, we focused on 𝑆𝐹−𝐶
and 𝑆𝑀−𝐶 since there is no focus on CWE Classes in the other sce-

narios as mentioned before. As shown in Table 4, while most of

the tools are generally poor in detecting real-world vulnerabili-

ties, there are still rather the same vulnerabilities reported in the

patched versions. Overall, it reflects that the selected tools are not

“vulnerability-sensitive” enough since they are not sensitive enough

to distinguish pieces of code before and after patching the vulner-

ability. Especially in 𝑆𝑀−𝐶 , it unveils that Horusec and CodeQL

are more effective than the other tools on the patched versions,

with a𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ at 28.6% and 45.5%, respectively, while SBwFSB

still reported 16/17 the same CVEs. It was observed that there exist

minor differences between each vulnerable and patched version on

the syntax level, but the patched version does fix the corresponding

CVE. However, the detecting rules of these tools are coarse-grained.

This results in these tools capturing only simple patterns of these

CVEs on the syntax level, instead of capturing their exact patterns

on the semantic level. Meanwhile, we observed that there are cer-

tain vulnerability types are more often labeled as false positives

than others in the tools. For instance, Incorrect Type Conversion or
Cast (CWE-704), which is mapped by HS-JAVA-143 by Horusec,

is very likely to be false positives in our scope, especially on the

jackson-dataformats-binary [27] (205/275, 74.5%). Therefore, identi-

fying these kinds of vulnerability types and disabling corresponding

rules probably contributes to reducing false positives, although a

few true positives may be omitted.

Finding 3: These tools are not “vulnerability-sensitive” when
performing on patched versions, which reflect tools’ false posi-

tives. In particular, Horusec (6/21) and CodeQL (5/11) perform

better than the others. While SBwFSB seems less sensitive

(16/17) than the other 6 tools in 𝑆𝑀−𝐶 .
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Figure 7: Distribution of detected CVEs in each CWE Class.

3.2 RQ2: Detection Result Dissection
3.2.1 Setup. To analyze the root causes for the poor effectiveness

of the selected tools, we manually reviewed the 48 detected CVEs

and the 117 missing ones as well as the detecting rules’ imple-

mentation. This process was conducted in three rounds involving

three co-authors. Initially, each co-author individually analyzed all

the CVEs and detection rules of each tool, checking for any rules

mapped to CWE Weaknesses for undetected CVEs. Subsequently,

they discussed their findings to reach a consensus, resolving any

disagreements through further discussion. In the final round, 20%

of the CVEs were randomly selected for review by all authors. Dis-

agreements were resolved through discussion, potentially leading

to updates on the root causes. Finally, we grouped the root causes

into three main categories.

3.2.2 Results. Best vs. worst detected CWE Classes. Overall, Fig-
ure 7 reflects that among the vulnerabilities in our Java CVE Bench-

mark, CWE-{664, 707} are the easily detected CWE Classes. Specif-
ically, CWE-664 refers to Improper Control of a Resource Through
its Lifetime, which involves the management of system resources

such as memory allocation and deallocation, and CWE-707 refers
to Improper Neutralization, which includes vulnerabilities related

to the improper handling of input or data. Interestingly, although

vulnerabilities related to the two classes of CWE-691 and CWE-
710 are theoretically supported by all the deployed tools, most of

the associated CVEs remained undetected, except the SonarQube

which lacks rules for CWE-691. It is due to their low proportion

(4.8%) in our real-world benchmark. In particular, CVEs related to

CWE-664 are detected by all the tools. After eliminating the over-

lapping in detected vulnerabilities, 32 unique CVEs (32/107) in this

class were found. Especially, CVEs of {CWE-22, CWE-502, CWE-

200, and CWE-611} are the most frequently detected types within

this class, accounting for 62.5% (20/32). Moreover, 22 (14 unique) of

the 31 CVEs related CWE-707 were detected by all tools except for

Contrast. Within this class, 3 OS Command Injection (CWE-78), and

3 Improper Input Validation (CWE-20) were detected.

Finding 4: Real-world vulnerabilities related to CWE-664 and
CWE-707 are more easily detected, especially those relevant

to CWE-{22, 200, 502, 611}, CWE-{20, 78} are more effectively

detected. However, these tools still missed 70.1% of the 107

CWE-664 vulnerabilities and 37.5% of the 29 CWE-707 ones.

Composition of missing vulnerabilities (false negatives). The
48 successfully detected CVEs can be grouped into seven CWE
Classes: CWE-284 (3), CWE-664 (32), CWE-691 (2), CWE-693 (6),

1 for (javax.servlet.http.Cookie theCookie : theCookies) {

2 if (theCookie.getName ().equals("BenchmarkTest00002")) {

3 param = java.net.URLDecoder.decode(theCookie.

getValue (), "UTF -8");

4 break;

5 }

6 }

7 fileName = org.owasp.benchmark.helpers.Utils.TESTFILES_DIR+

param;

8 fos = new java.io.FileOutputStream(fileName , false);

Listing 2: Testcase 0002 (CWE-22) in the OWASP Benchmark.

CWE-703 (2), CWE-707 (14), and CWE-710 (1). We observed that it

is because their patterns are easy for SAST to spot, e.g., CVE-2019-
18393 [65] is a typical vulnerability related to CWE-22 caused by not

checking the use of “\”, which is a common path-traversal pattern

for SAST tools to detect. As displayed in Table 5, the composition of

overlooking the 117 CVEs can be summarized into three categories:

① C1: No detecting rules supported by tools (2.6%-8.5%). In
this category, although only 3 (2.6%) CVEs are not supported by any

tool’s pre-defined rules, we found that each tool generally fails to

support 2-10 (8.5%) CVEswhich SAST is typically sufficient to detect

but no rule was implemented. In particular, even CodeQL, which

has the most rules among these tools, still failed to implement rules

for 10 CVEs in the Java CVE Benchmark. For instance, CVE-2015-
2913 [62] is related to Use of Insufficiently Random Values, where
SAST is generally sufficient to detect most relevant instances [6]

although false negatives may occur if custom cryptography is used.

② C2: Inadequate detection capabilities of tools (76.9%-82.9%).
90-97 CVEs were undetected due to inadequate detection capacities

of these tools, indicating that the predefined rules in the tools
are not sufficiently effective in identifying real-world vulnerabil-

ities. On the one hand, the primitive implementation of predefined

rules, including source and sink lists, significantly impacts the

tools’ detection, e.g., 91.2% (52/57) of CVEs related to CWE-502

went undetected despite targeted rules. While a base search for

ObjectInputStream() and readObject() in source code could

detect some related vulnerabilities, most cases required additional

DFA and CFA in rule implementation. On the other hand, code

patterns in the CVEs were notably more complex than those in

the synthetic cases, a finding that is also revealed in a concurrent

study on Android [52]. For instance, despite owning rules targeting

CWE-22, tools such as SBwFSB and CodeQL only detected 16.7%

of related CVEs, even though they could detect all synthetic cases

labeled with the same CWE in the OWASP Benchmark. As shown

in Listing 2, the synthetic code pattern is relatively straightforward

and follows a linear flow within the same scope.

Conversely, the code pattern in the Java CVE Benchmark exam-

ple [94] (Listing 3) is more nuanced and encapsulated within a class

structure. It arises from two separate methods for user-controlled

input and usage respectively with an implicit connection of a class

field. Although there is some normalization (L5), it is not sufficient

to prevent path traversal sequences. The vulnerability manifests

when another method getURL attempts to read the field this.path
and resolve it (L11-17), and an attacker can exploit this by providing

specially crafted paths. Detecting it requires the ability of inter-

procedural DFA and insufficient validation detection, which is not

required by Listing 2.
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Table 5: Examples of missing CVEs by categories.

Categories CVE ID CWE Weakness CWE Class

C1 CVE-2015-2913 CWE-330 CWE-693
CVE-2013-5960 CWE-310 CWE-693

C2 CVE-2018-9159 CWE-22 CWE-664
CVE-2021-20190 CWE-502 CWE-664

C3 CVE-2014-3651 CWE-400 CWE-664
CVE-2018-1274 CWE-770 CWE-664

1 public ClassPathResource(String path , ClassLoader

classLoader) {

2 Assert.notNull(path , "Path must not be null");

3 String pathToUse = StringUtils.cleanPath(path);

4 if (pathToUse.startsWith("/")) {

5 pathToUse = pathToUse.substring (1);

6 }

7 this.path = pathToUse;

8 this.classLoader = (classLoader != null ? classLoader :

ClassUtils.getDefaultClassLoader ());

9 }

10 @Override

11 public URL getURL () throws IOException {

12 URL url = this.classLoader.getResource(this.path);

13 if (url == null) {

14 throw new FileNotFoundException(this.path + "cannot

be resolved to URL because it does not exist");

15 }

16 return url;

17 }

Listing 3: Simplified code snippet for CVE-2018-9159.

The marked distinction between these patterns highlights the

need for SAST tools to excel in analyzing real-world code, especially

when dealing with object interactions and method calls. While the

OWASP Benchmark is useful for basic testing, it lacks the com-

plexity present in real-world scenarios. Thus, using a real-world

benchmark is vital for evaluating the practical effectiveness of tools.

③ C3: Hard to be detected by SAST (14.5%). In this case, we

found that there are 24 CVEs difficult for SAST to detect. For ex-

ample, CVE-2014-3651 [61] is a vulnerability related to Uncontrolled
Resource Consumption (CWE-400). However, SAST typically has

limited utility in recognizing resource exhaustion problems, since

determining boundary values on integers requires a strong capacity

in propagating boundary value information across any control flow

units including loops. Moreover, in addition to certain practical

restrictions, there exists a theoretical limit when inferring based

on the undecidability of SAST [47]. For instance, invariants and

post-conditions are supposed to be deduced even for a loop.

Finding 5: Over 76.9% overlooked CVEs are caused by insuffi-

cient support of these tools, especially those mapped to CWE-22,

CWE-502. While 14.5% are hard for SAST to detect, including

those related to checking boundary value issues (e.g., CWE-400).

3.3 RQ3: Consistency Analysis
3.3.1 Setup. Inspired by findings on the Java CVE Benchmark as

shown in RQ1, we further constructed two consistency analyses:

(1) the consistency of detected CVEs among the tools, and (2) the
consistency of detected CVEs between tools actually detect and
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Figure 8: Tools combination in 𝑆𝑀−𝐶 .

what they claim to support. For the latter task, we try to explore

whether these tools “keep their promises” based on the mapping

results of detecting rules and CVEs. To weaken the impacts of CVEs

that are hard for SAST to detect (C3 in Section 3.2.2), we place the

scope on those CVEs that SAST technically has the ability to detect.

3.3.2 Results. The fact is that the number of detected CVEs in each

CWE Class varies for each tool, as displayed in Figure 7.

Consistency among the tools. As indicated in Figure 8, there is

no CVE that was detected simultaneously even by the four best-

performing tools, which reflects these tools have different focuses.

By comparing the detected vulnerabilities by all tools, we found that

11 unique CVEs are detected only by Horusec, with 11 and 4 ones

only detected by SBwFSB, and Semgrep respectively. Specifically,

the most detected CVEs by Horusec are in CWE-664, especially
those related to CWE-611. Meanwhile, the most detected CVEs

by SBwFSB are in CWE-707, including CWE-20. While CodeQL

detected most CVEs related to CWE-693, e.g., the use of a broken
or risky cryptography algorithm (CWE-327). However, there are 19

(39.6%) certain CVEs being detected by no less than two tools, such

as CVE-2018-17187 (CWE-295), CVE-2018-20318 (CWE-611), and

CVE-2018-20227 (CWE-22), etc. It is observed that these CVEs’ pat-

terns are easy for SAST to detect. For instance, CVE-2018-17187 [63],
a vulnerability found in The Apache Qpid Proton-J transport [3], is
related to Improper Certificate Validation, which even syntax-based

tools can hit by searching for well-known dangerous sinks such as

X509TrustManager, and checkClientTrusted.
Besides, although SBwFSB and CodeQL detected 3 CVEs related

to CWE-22, we found that CodeQL even reported a more precise

vulnerability type: Path Traversal: ‘\\..\filename’ (CWE-29) for CVE-
2018-20227 [64]. Specifically, there are 20 rules for detecting related

vulnerabilities covering both absolute path traversal and relative
path traversal, including {CWE-22, CWE-23, CWE-29, CWE-36}, etc.

It unveils that CodeQL hasmore complete coverage and fined
granularity on path-traversal vulnerabilities.

Since none of the single tools performs well on the Java CVE

Benchmark, and there are different focuses among tools, we try

to analyze the effectiveness improvement by combining multiple

SAST tools. Here, we selected and combined the SAST tools with

the most CVEs found. A CVE is thereby considered found if at

least one tool was able to detect it. As the combination of tools

can also result in an increase in false positives, we selected those

that contain the fewest SAST tools and also output the fewest

false positives. The best combination of the 4 tools is {CodeQL,
Horusec, SBwFSB, Semgrep}, which can cover 45 unique CVEs

as shown in Figure 8. However, the 𝐶𝑉𝐸_𝑅 reaches 27.3% (45/165)

and𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ at 66.7% (30/45), which is an improvement of only
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Figure 9: Consistency between the detected CVEs and those
claimed to be supported by each tool.

14.6% but 38.1% increase in false positives compared with Horusec.

For a combination of three tools, the best one is {CodeQL, Horusec,
SBwFSB}, with 𝐶𝑉𝐸_𝑅 at 24.8% and 𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ at 63.4%.

Finding 6: The combination of tools can improve vulnerability

detection (45/165, 27.3%) but is not high as expected, which

still fails to detect over 70% real-world vulnerabilities, with an

approximate cost of a 63.4-66.7% increase in false positives.

Consistency between detected and claimed by each tool. As
revealed in Table 2, by mapping their rules to CWE-1000, each tool

is able to support a wide range of vulnerabilities but still misses

some CWE Classes. In detail, CVEs belonging to CWE-{682, 697, 703,
710} are less supported by tools than those of the other CWE Classes,
although CodeQL implements 204 rules supporting CWE-710. It
unveils that it is generally consistent with the most detected CWE
Classes, i.e., CWE-{664, 693, 707} as mentioned in Section 3.2.2.

However, vulnerabilities related to CWE-682 are only supported

by CodeQL, while CodeQL and Contrast claim to support those

belonging to CWE-697. These two classes did not appear in our

benchmarking experiment, so we are not able to analyze their

consistency. When it comes to the two CWE Classes, they con-

cern vulnerabilities related to incorrect calculation and incorrect

comparison, respectively. Through our analysis, we observed these

vulnerabilities are only caused by security-critical calculations/com-

parisons, most likely causing security-unrelated issues including

code smell, etc. Therefore, the influence of the lack of real-world

vulnerabilities under the two CWE Classes has been weakened.

As unveiled in Figure 9, there is much over-statement by
these tools. Specifically, these tools are generally over-claimed

to support 90.5% vulnerabilities than their actual capacity in our

real-world benchmark. It indicates that potential users should select

tools cautiously, instead of only relying on tools’ claims. Even the

best performing tool, Horusec, overstates that 80.4% of CVEs can

be detected by its support, whereas actually they are not. Moreover,

CodeQL has the most default detecting rules (1,065), with support

for unique 196 CWE Weaknesses, but it only detected 7.9% CVEs

of those claimed to support. However, for specific CWE Classes,
Horusec owns 40.4% (59/146) rules related to CWE-693, especially
for CWE-295 (13), and CWE-798 (28), since it is integrated with

GitLeaks. As a result, it also detected 20% CWE-693 related vul-

nerabilities, including CVE-2013-2172, which is caused by an XML

signature cryptographic issue. But SBwFSB detected none of the re-

lated CVEs although owning (31/152) rules belonging to CWE-693.

0

100

200

300

400

500

T
im

e 
co

ns
um

ed
 (

s)

LoC
CodeQL Contrast Horusec Insider
SBwFSB Semgrep SonarQube

Figure 10: Average performance of SAST tools.

Finding 7: These tools are generally over-stated in their ca-

pacity for vulnerability detection. Specifically, there are over

90% CVEs failing to be detected although they are claimed to be

supported. Especially Contrast, it over-claims to support 99.1%

(112/113) CVEs in the Java CVE Benchmark.

3.4 RQ4: Performance Analysis
3.4.1 Setup. (1) We first collected Java open-source programs

from the repositories published in the package manager including

Maven [29] since they are more likely to be packaged successfully.

We got 3,500 programs as the initial list. (2) We then selected repre-
sentative programs by setting two sub-criteria: ① each program’s

package should be relied on by at least one package, and ② there

exist new packages relying on them within the last three years.

Finally, we obtained 1,049 programs that can be packaged, of which

the versions are all up-to-date till August 2022. To ensure robustness

and consider potential infrastructure variability, we performed each

performance measurement three times for each tool. The reported

results represent the average of these trials.

3.4.2 Results. We analyzed their runtime performance based on

the lines of code (LoC) of the programs.

Performance analysis. Figure 10 shows that the required time

by these tools increases as LoC increases. Specifically, the perfor-

mance does not vary considerably when LoC is less than 50k, but it

increases significantly above 50k, particularly for CodeQL. Insider

is the fastest among the tools studied, requiring on average less

than 10 seconds when LoC is no more than 50k, and about 43.9

seconds to scan even for programs over 100k LoC. It is because

Insider is a syntax-based SAST tool, by comparing the source code

directly against the pre-defined keywords. Contrast is also efficient,

surpassing Insider as the fastest tool when LoC is greater than 20k

since its input must be a jar or war file of the Java programs, and

the scan is performed by uploading the jar or war file to a cloud

server. CodeQL requires more time than the other 6 tools when

LoC is over 50k since it involves the aforementioned two steps:

(1) first generates the codebase based on the given program; (2)
then performs semantic analysis involving DFA and CFA on the

codebase with queries. Moreover, some queries take a long time to

scan, such as “Taint Path” checking.
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Finding 8: The analysis time increases sharply on programs

over 50k LoC. Insider and Contrast are the fastest, while Sem-

grep and CodeQL require the longest time to finish the scan,

with an average of 267s, and 193s, respectively.

Effectiveness vs. performance. Syntax-based tools (Insider, Ho-

rusec) generally run faster than semantic-based ones (CodeQL,

SBwFSB, SonarQube, and Semgrep), which coincides with our afore-

mentioned assumption. Horusec is the slowest syntax-based tool,

which generally takes longer than SonarQube to complete a scan.

In particular, it takes an average of 83 seconds to complete a scan

when the LoC is less than 50k, and 120 seconds when the LoC is

over 50k. It is considered since (1) Horusec needs to copy the folder
of programs to prepare for the scan, (2) integrates with various

security tools including GitLeaks, Trivy, and OWASP Dependency-

Check, and (3) is equipped with more complex detecting patterns

than Insider. Meanwhile, Semgrep takes more time than others on

each program when LoC is no more than 50k, generally taking 267

seconds on average. Interestingly, it is not affected much by the

program size, with an average scan time of 230 seconds on LoC

less than 500, while on LoC of 10k-15k, it takes an average of 274

seconds to complete the scan. Although both Semgrep and CodeQL

perform semantic-based analysis when scanning, the performance

of Semgrep was not influenced by LoC. We summarize the two

reasons: (1) besides a combination of syntax analysis and semantic

analysis, there are also some trade-offs between detecting capacity

and scan speed in Semgrep, including limited intraprocedural DFA,

no pointer or shape analysis, and individual elements in arrays

or other data structures are not tracked, etc. It also results in the

aforementioned limited effectiveness in vulnerability detection in

Section 3.1.2. (2) Semgrep takes an optimization called “Single-file
analysis” that directly links scanning with the number of rules, in-

dependent of LoC. Specifically, Semgrep slices and runs single files

in a given program, which also deprives it of the ability to detect cer-

tain complex inter-procedural issues. These insights could guide the

development and refactoring of SAST tools to handle continuously

updated rules and increasingly complex software implementations,

especially for those with over 100k LoC.

Finding 9: There is a trade-off between semantic-based analysis

and the performance within Semgrep, which contributes to its

scanning performance well. Meanwhile, its deployed file-slicing

technology is considered useful when analyzing large programs.

4 DISCUSSION
4.1 Lessons Learned
4.1.1 For Java SAST Developers. (1) Improve effectiveness with effi-
cient rules. Since detecting capacity is the foundation of SAST tools,

developers should first ensure their effectiveness. ① Implement

rules by extracting exact semantic patterns of vulnerabilities, e.g.,

to detect CWE-502 vulnerabilities, it is not enough to only search

for common sinks such as readObject(), DFA and CFA should

also be used to trace the tainted path (Section 3.2.2). ② Tools should

excel in analyzing real-world code. This requires developers to ob-

serve and summarize the features of real-world vulnerabilities when

designing rules, e.g., tools should be enhanced by analyzing vulner-

abilities with object interactions and method calls (Section 3.2.2).

(2) Improve the scalability on large programs. Since users would
not consider a time-consuming SAST tool even though it could hit

some vulnerabilities, developers should consider the performance

when scanning large programs, e.g., the “single-file” analysis in

Semgrep would be a useful inspiration (Section 3.4.2).

4.1.2 For Java SAST Researchers. (1) A unified mapping reference is
essential. As mentioned in Section 2.3, it is desirable to use publicly

available references such as CWE to map detecting rules and vulner-

abilities, which would facilitate the evaluation of the effectiveness

of SAST tools for various vulnerability types and further gives di-

rections for improvement. (2) Call for a more comprehensive and
systematic real-world benchmark. To better understand the actual

effectiveness of tools, there is a need for constructing a real-world

benchmark containing diverse vulnerability types according to ex-

isting references such as CWE. Despite our efforts to include as

many CVEs as possible, the benchmark could be further diversi-

fied by incorporating more vulnerability types, particularly those

belonging to CWE-682 and CWE-697.

4.1.3 For Java SAST Users. (1) Select tools according to different
application scenarios. ① As mentioned in Section 3.3.2, Horusec per-

forms better on detecting vulnerabilities related to CWE-611, with

CodeQL better on CWE-327 and CWE-22, while SBwFSB outper-

forms on those related to CWE-20. ② Users are also recommended

to choose different tools depending on various phases in SDLC,

e.g., during the implementation phase of large programs, faster

tools such as Semgrep would be better since the performance is

not limited by the size of the program and not requiring the pro-

gram to be compilable (Section 3.4.2). While for major phases of

the SDLC, it may be necessary to choose tools that scan compre-

hensively and efficiently such as Horusec, which is more effective

than others although using syntax-based analysis. (2) Call for use
of tools combination, and even other vulnerability detection tools. In
practice, we generally recommend using a combination of multiple

SAST tools, even better also involving different types of tools such

as SCA tools, to facilitate as much as possible shifting-left secu-

rity during SDLC, e.g., Horusec integrates OWASP Dependency

Check in it to detect vulnerable dependencies used (Section 3.1.2).

(3) Disable rules that are more likely labeled as false positives. As
mentioned in Section 3.1.2, this strategy helps triage through issues

reported since certain issue types are more frequently labeled as

false positives than others on a specific tool.

4.2 Threats to Validity
4.2.1 External Validity. (1) Our study’s generalizability is the pri-

mary external threat. However, we have ensured diversity in our

tool selection and comprehensiveness in our dataset to enhance the

relevance of our findings. (2)Another threat relates to our SAST tool

selection when focusing on “security-related” tools in Section 2.1.

To mitigate this, we selected these tools systematically based on

their documentation and proven ability to detect vulnerabilities

in the OWASP Benchmark. This not only enabled us to compare

tool effectiveness across synthetic and real-world benchmarks but

also ensured a fair comparison across tools. Moreover, we required

tools to have well-documented rules. While this requirement is

930



Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

crucial for our analysis approach and consistency analysis (RQ3),

we acknowledge that it may limit the variety of tools studied.

4.2.2 Internal Validity. (1) The first threat pertains to the mapping

of rules to CWE. Since the studied tools have mapped their own

rules to CWE Weaknesses except for SpotBugs, aiding our further
mapping to CWE Classes. For SpotBugs, which lacks such mapping,

we mitigated this threat by conducting a systematic, three-round

mapping process involving three co-authors to minimize subjec-

tivity. (2) Another threat is the validation of vulnerabilities in our

benchmark. To mitigate this, we engaged three security experts

from our industry partner in a rigorous cross-validation process

(Section 2.2.2). This ensured the quality of our benchmark. (3) The
last threat concerns the presence of undetected vulnerabilities in

the Java CVE Benchmark. However, we focused on whether the

selected tools could find known and existing vulnerabilities, so it is

feasible to draw conclusions about their effectiveness.

5 RELATEDWORK
5.1 Studies of SAST Tools
There are many existing studies evaluating SAST tools [2, 5, 7, 10,

26, 40, 41, 45, 50, 51, 58, 80, 98, 100, 101].

Most studies evaluating Java SAST tools use either synthetic

benchmarks [2, 5, 49, 58] or real-world benchmarks that are lim-

ited in size and/or vulnerability types [40, 46, 97]. For instance, the

benchmarks used in [2, 5, 49, 58] are synthetic and only consider

partial vulnerability types, which could hinder a more compre-

hensive conclusion. While Kaur et al. [46] compared two SAST

tools for Java on a real-world benchmark (Apache tomcat dataset),

the vulnerability types of their benchmark are limited, i.e., only

involving 5 CWE weaknesses, and they only evaluated the tools’

false negatives. Similarly, Goseva-Popstojanova et al. [40] evalu-

ated a commercial Java SAST tool using Tomcat, which contains 32

vulnerabilities grouped into only 4 CWE weaknesses. They consid-

ered the effectiveness of tools and their combination but without

analysis of their rules mapping or efficiency. Meanwhile, Thung

et al. [97] conducted an analysis of the false negatives of five Java

SAST tools against three open-source programs over eight years

ago. Their findings, which align with our study, revealed that the

tools under examination exhibited weaknesses in detecting real-

world vulnerabilities. However, their study was limited in terms

of the number of tools evaluated and the range of vulnerability

types included in their benchmarks. In contrast, our work provides

a comprehensive evaluation of Java SAST tools, considering both

synthetic and real-world benchmarks, and multiple evaluation per-

spectives including effectiveness, consistency, and efficiency. This

distinguishes our work from previous studies and provides a more

holistic understanding of the capabilities of Java SAST tools.

Several studies have evaluated SAST tools in other research areas,

such as Android [10–12, 26, 52, 55, 82, 84, 96], C/C++ [1, 23, 50, 106],

JavaScript [7], and PHP [60]. For instance, Chen et al. [10] eval-

uated 4 Android SAST tools on 2,157 security weaknesses of 693

banking apps and proposed a tool named AUSERA to identify data-

related weaknesses. Pauck et al. [82] conducted an evaluation to

explore whether Android taint analysis tools keep their promises,

and proposed ReproDroid, a framework allowing accurate compar-

ison. Mordahl et al. [55] explored the complexities of configuration

spaces in Android static taint analysis tools. Similarly, studies such

as [50] and [7] have included various real-world vulnerabilities to

evaluate SAST tools for C/C++ and JavaScript, respectively. How-

ever, their results are not necessarily transferable to Java SAST

tools due to the different language constructs. Yet, there is a lack of

similar efforts in evaluating SAST tools for Java, particularly with

real-world vulnerabilities. This gap in the literature underscores

the novelty and importance of our work.

In summary, our work distinguishes it from the state of the art in

terms of the considered (1) programming languages (Java SAST
tools), (2) benchmark types and diversity of vulnerabilities
(synthetic plus the largest real-world vulnerabilities), (3) evalu-
ation methodology (mapping detecting rules and ground truth

to CWE hierarchy), (4) detection code granularity (vulnerable

file-level andmethod-level), and (5) evaluation perspectives (rules
coverage, effectiveness, consistency among tools’ focuses as well

as their over-statements, and runtime performance analysis).

5.2 Studies of Other Analysis Tools
Some studies have been conducted on quality assurance tools, with

a primary focus on code-quality issues [41, 48, 51, 98, 100]. For in-

stance, Liu et al. [51] compared 6 Java quality assurance tools with

1,425 code-quality bugs and analyzed the effectiveness of bug warn-

ings. Lenarduzzi et al. [48] performed a study of six tools including

SonarQube, with a primary focus on syntax, design, and bad prac-

tices. They conducted an analysis of 47 Java projects, assessing the

agreement and precision of the tools. Their study offers valuable

insights into the overall capabilities of these tools, particularly in

identifying low-quality code and improving it through the evalu-

ation of 151 code smells. Contrary to the aforementioned studies,

our research specifically concentrates on vulnerability detection,

providing a more detailed analysis of SAST tools.

6 CONCLUSION
In this paper, we conducted a comprehensive study on seven SAST

tools based on OWASP Benchmark and our constructed real-world

benchmark, by evaluating them from effectiveness, consistency,

and runtime performance analysis. The comparison and evaluation

show that their detection capacity remained lower than expected.

Many useful findings were unveiled to facilitate this important

research direction, specifically, our work provides actionable guid-

ance on SAST tool development, improvement, and selection for

SAST developers, researchers, and potential users.

7 DATA AVAILABILITY
We have released all evaluation data and source code [102].
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