
Demystifying the Composition and Code Reuse in Solidity Smart
Contracts

Kairan Sun
Nanyang Technological University

Singapore, Singapore
sunk0013@e.ntu.edu.sg

Zhengzi Xu∗
Nanyang Technological University

Singapore, Singapore
zhengzi.xu@ntu.edu.sg

Chengwei Liu
Nanyang Technological University

Singapore, Singapore
chengwei001@e.ntu.edu.sg

Kaixuan Li
East China Normal University

Shanghai, China
kaixuanli@stu.ecnu.edu.cn

Yang Liu
Nanyang Technological University

Singapore, Singapore
yangliu@ntu.edu.sg

ABSTRACT
As the development of Solidity smart contracts has increased in
popularity, the reliance on external sources such as third-party
packages increases to reduce development costs. However, despite
the use of external sources bringing flexibility and efficiency to the
development, they could also complicate the process of assuring
the security of downstream applications due to the lack of package
managers for standardized ways and sources. While previous stud-
ies have only focused on code clones without considering how the
external components are introduced, the compositions of a smart
contract and their characteristics still remain puzzling.

To fill these gaps, we conducted an empirical study with over
350,000 Solidity smart contracts to uncover their compositions, con-
duct code reuse analysis, and identify prevalent development pat-
terns. Our findings indicate that a typical smart contract comprises
approximately 10 subcontracts, with over 80% of these originating
from external sources, reflecting the significant reliance on third-
party packages. For self-developed subcontracts, around 50% of the
subcontracts have less than 10% unique functions, suggesting that
code reuse at the level of functions is also common. For external
subcontracts, though around 35% of the subcontracts are interfaces
to provide templates for standards or protocols, an inconsistency in
the use of subcontract types is also identified. Lastly, we extracted 61
frequently reused development patterns, offering valuable insights
for secure and efficient smart contract development.

CCS CONCEPTS
• General and reference → Empirical studies; • Software and
its engineering→ Software libraries and repositories.

KEYWORDS
smart contract composition, code reuse, development pattern

∗Zhengzi Xu is the corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616270

ACM Reference Format:
Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu. 2023.
Demystifying the Composition and Code Reuse in Solidity Smart Contracts
. In Proceedings of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3611643.3616270

1 INTRODUCTION
Smart contracts are a special type of program built on top of
blockchain technology to automate, verify, and enforce the ne-
gotiation of agreements between parties. The development of smart
contracts has gained significant traction in recent years as it has the
potential to revolutionize a wide range of industries such as finan-
cial services, supply chain management, and the Internet of Things
(IoT) [23]. To lighten the development of smart contracts, Solid-
ity [1] has been proposed and widely used as the primary language
inmainstream blockchain platforms. For instance, Ethereum [18], as
one of the most popular open-source blockchain platforms, has em-
braced the diverse ecosystem of decentralized applications (DApps)
by using Solidity smart contracts.

However, as the complexity of DApps grows, the development of
smart contracts (i.e., smart contracts in this paper here and below
refer to Solidity smart contracts) is increasingly relying on well-
established subcontracts (i.e., contract-level code blocks as detailed
in Section 2) from third parties to avoid re-inventing wheels and
reduce development efforts. While the reuse of third-party subcon-
tracts also poses a new threat that, like supply chain attacks in
traditional Web2 ecosystems, vulnerabilities and flaws from third-
party contracts could further collapse downstream applications,
especially in the context of early-staged smart contract develop-
ment that lacks mature dependency management solutions. As
reported in Feb 2022 [14], two critical vulnerabilities in the subcon-
tracts provided by Multichain [11] affected 7,962 user addresses,
and a total of over 3 million dollars were exploited. In this case,
disclosing the potential security risks hidden in reused third-party
subcontracts in time is vital to the assurance of Web3 Security.

Nevertheless, the diverse and flexible third-party subcontract
reuse makes it non-trivial to precisely manage third-party subcon-
tracts introduced during smart contract development. Although
most commonly used third-party subcontracts are released in the
format of NPM packages, and they can be introduced by NPM

https://doi.org/10.1145/3611643.3616270
https://doi.org/10.1145/3611643.3616270

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu

dependencies, there are still various ways and practices to reuse ex-
isting third-party subcontracts (i.e., simply declaring dependencies
by URLs from Github [2] Repos, IPFS gateways [3], Swarm gate-
way [4], etc.). Despite the convenience, such diversity and flexibility
also complicate the security assurance of downstream applications
since the URLs could be untrustworthy. Moreover, though NPM of-
fers version management of dependencies, it is challenging to trace
the versions of the imported subcontracts, especially after on-chain.
This makes it difficult to derive standardized solutions to identify,
manage and remediate known vulnerabilities existing in depen-
dencies like what Software Composition Analysis tools [48] do to
Web2 applications. In addition to external imports, many develop-
ers also tend to directly clone the existing subcontracts into their
contracts for convenience. As revealed by Pierro et al [41], 79.1% of
smart contracts contain duplicated code. Such code clones further
challenge the management of reused third-party subcontracts.

To unveil the mysteries in the development of smart contracts,
various exploratory studies have been conducted. Some researchers
investigated the characteristics of existing smart contracts such as
the design patterns [25] and source code complexity [40] of different
kinds of smart contracts, while some researchers [34, 35] studied
the code reuse of smart contracts at different granularity includ-
ing contracts, subcontracts, and functions. However, most existing
works only focused on a single granularity of smart contracts such
as subcontracts or functions, neglecting how these elements are
introduced during development. This may limit the understanding
of smart contracts and lead to incomplete or inaccurate conclusions
about smart contracts. The lack of exploration in such compositions
also compromises the derived guidance on further management and
governance of the reuse of smart contracts across the ecosystem.
To fill these gaps, we conducted an empirical study to investigate
the reuse of the subcontracts from the perspective of contract de-
composition on the Ethereum blockchains.

The overall framework of this study is illustrated in Figure 1. We
first collected over 350,000 smart contracts deployed between Janu-
ary 2021 and January 2023 from Etherscan [7], a leading blockchain
explorer and analytic platform for Ethereum. Additionally, to en-
hance our understanding of the existing third-party packages for
smart contract development and expand our dataset further for
subsequent code reuse analysis, a list of 353 third-party packages
from NPM [9] and GitHub [2] Repos was compiled from the import
statements of the collected contracts. To ensure the robustness of
our subsequent code reuse analysis, we first validated the contracts
and parsed them into JSON files with ANTLR-4 [6]. We then ex-
amined and filtered out contracts with no or slight modification
by conducting a contract-level code clone detection. After this pro-
cess, 296,236 distinct contracts are sorted out for further studies.
Our empirical study offers a comprehensive view of contract com-
position and code reuse practices considering the regulations to
introduce external components. Specifically, we first decompose
contracts into various subcontracts based on their origins and how
they were introduced into the contracts. This allows us to separate
self-developed and external subcontracts for in-depth code reuse
analysis. For self-developed subcontracts, we examine function-
level code reuse, summarizing the commonly reused functions and
functions required to be self-defined. For external subcontracts,
we study the usage of frequently reused subcontracts and clones

Source code

Data Sources Data Preparation

Imports

GitHub

NPM

Identify
similar contracts

Extract
patterns

RQ4:
Development

Patterns

Detect
code clones

Reuse
analysis

RQ2: Analysis of
self-developed
subcontracts

RQ3: Analysis of
external

subcontracts

Decompose
contracts

Identify
source

RQ1: Contract
decomposition

Code
Processing

Figure 1: Framework of the study

across third-party packages. Lastly, based on this comprehension,
we extract and analyze the frequently reused development patterns.

Throughout the empirical study, we concluded some findings
as follows. For example, ① More than 80% of the subcontracts are
from external sources. The largest identified external source is
NPM, accounting for over 72% of the total external subcontracts. ②
Despite the fact that Solidity allows to include NPM dependencies
by specifying the required subcontract with the package name in
import statements, over 56% of the cloned subcontracts are sourced
from NPM packages, indicating a mess in dependency management.
③ The code reuse of functions is common since around 50% of self-
developed subcontracts have less than 10% unique functions. As the
number of functions increases in a self-developed subcontract, the
percentage of unique functions tends to decrease. This highlights
the tendency of developers to rely on pre-existing code blocks when
developing smart contracts. ④ Though around 35% of the external
subcontracts are interfaces, commonly used as protocol templates,
we identified an inconsistency in the use of subcontract types which
presents challenges in contract management. ⑤ We identified 61
prevalent development patterns, 68.75% of which are for token
creations. While these patterns could greatly reduce development
costs, it would be risky if a vulnerability or security exploit was
found in the patterns. Hence, management in such patterns to
continuously monitor and assess their security is important.

In conclusion, the main contributions of this study are as follows.
• We provide a thorough analysis of common approaches to
introducing subcontracts in smart contracts, with a further
code reuse analysis to identify the most frequently reused
code blocks and their purpose.

• We conduct a comprehensive study of 353 identified third-
party packages for smart contract development, analyzing
their usage frequency and functional properties.

• We summarize and assess 61 frequently used development
patterns for smart contracts, which could be potentially used
in low-code development.

• Based on our results and findings, we provide an in-depth
discussion regarding the challenges in managing external
components and development patterns for smart contracts.

2 BACKGROUND
In this section, we provide explanations and definitions of termi-
nologies that have been used in this study.

Demystifying the Composition and Code Reuse in Solidity Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

✦ Smart Contract and Subcontract. In this study, a smart con-
tract refers to code blocks sharing the same address while a sub-
contract refers to a contract-level code block. According to Solidity
documentation [12], four types of subcontracts have been defined
based on the way they are used:

• interface: subcontracts to define a standard or protocol with-
out methods implementations.

• abstract: subcontracts to define a basic structure with some
methods implementations.

• contract: complete and executable subcontracts.
• library: subcontracts to provide reusable code blocks for
common operations without storage.

To clarify this further, in our study, subcontract refers to inter-
faces, abstract contracts, contracts, and libraries as detailed above.
This serves to distinguish between modularized contract-level code
blocks (subcontracts) and the composite code eventually deployed
on the blockchain (contract). Essentially, these subcontracts can be
combined to form a complete contract ready for deployment.
✦ Ethereum [18] and Etherscan [7]. Ethereum is an open-source
blockchain platform supporting decentralized applications through
smart contracts. For our study, we selected two networks:

• EthereumMainnet: themain blockchain network for Ethereum
blockchain involving real transactions.

• Goerli Testnet: a testing network for Ethereum blockchain
to be used for smart contract testing and developing.

Etherscan is a blockchain explorer for the Ethereum blockchain
to provide detailed information on blocks including transactions,
addresses, and the source code of smart contracts if available.
✦ EIPs. EIPs (Ethereum Improvement Proposals) [8] are formal
proposals for the Ethereum network that help to document the
standardized protocols with possible implementations in a well-
organized format. As EIPs are audited and expected to be safe to
reuse, we included EIPs as a basic approach to evaluating the safety
of smart contracts, third-party packages, and development patterns.
✦ Clone Types. Four clone types categorize code clones in soft-
ware systems [42]. In our study, we focus on type-2 clones, which
are syntactically identical codes with different identifiers or lit-
erals, and use type-1 clones, exact code copies differing only in
whitespace or comments, for validation. We exclude type-3 and
type-4, which concentrate on major changes and semantic paral-
lels. While smart contracts are relatively simple and standardized,
type-3 and type-4 clones may introduce a significant amount of
false similarities, affecting the overall accuracy of the result.

3 EMPIRICAL STUDY
3.1 Research Questions
The structure of our research questions is presented in Figure 2. To
explore contract compositions and common development practices
with considerations of dependency introduction, we first decom-
pose contracts into subcontracts, identifying their origins and intro-
duction methods. We then conduct in-depth code reuse analyses on
subcontracts from various sources separately (i.e., self-developed
or external), providing insights into their individual characteristics.
Lastly, with a better understanding of the compositions of contracts
and code reuse, we extracted frequently used development patterns.

……

Solidity smart contracts

External
sources

Self-
developed

Subcontracts

Code reuse analysis

Development Patterns (RQ4)

RQ3 RQ2

Decomposition (RQ1)

Figure 2: Relation between research questions

3.1.1 Contract Clone Decomposition (RQ1): What are the
common approaches to introducing subcontracts into smart
contracts and their sources? Identifying contract compositions
and quantifying the use of various approaches to introducing sub-
contracts. The results obtained from the exploration serve as the
fundamental for the subsequent analysis.

3.1.2 Analysis of Self-Developed Subcontracts (RQ2): What
are the characteristics of self-developed subcontracts? Un-
derstanding the characteristics and extent of code reuse in self-
developed subcontracts can highlight common areas of customiza-
tion, thereby informing tailored development practices and tooling.

3.1.3 Analysis of External Subcontracts (RQ3): What are
the characteristics of external subcontracts? Analyzing the
characteristics and common applications of top reused external
subcontracts and third-party packages to aid in better contract
development guidance and third-party package management.

3.1.4 Development Patterns (RQ4): What are the commonly
used development patterns in smart contract development?
Extracting and analyzing frequently reused development patterns
in smart contract development which reflects common usage and
safety practices, thus informing best practices and potentially influ-
encing the design of safer smart contract development frameworks.

3.2 Dataset Preparation
An overview of our data preparation process is presented in Figure 3.
We collect smart contract source code from Etherscan [18], NPM [9],
and GitHub Repos [2]. To normalize and transfer the collected code
into a suitable format for the subsequent analysis, we also conduct
a series of data preprocessing before our analysis.

3.2.1 Contract Collection. For our empirical study, we first col-
lected the source code of 221,309 deployed smart contracts on the
Ethereum Mainnet and 131,207 contracts on the Goerli Testnet [15]
from Etherscan [7]. To extend our dataset and better trace sub-
contract origins, we then collected the source code of third-party
packages for smart contract development, the list of which was
compiled by performing a syntax-based extraction to the import
statements from the primary dataset. In the end, we managed to
identify the use of 337 NPM packages and 33 GitHub repositories
that are used in smart contract development.

3.2.2 Contract Preprocessing. After collecting the source code
of smart contracts, the following three steps are taken in sequence
to process the contracts for the subsequent experiments.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu

Source Code
Validation

Imports

Contract Collection

Contract Data
Extraction

Duplicated Data
Removal

Contract Preprocessing

Tokenize
Normalize
MD5 Hash

Figure 3: Overview of data preparation

Source Code Validation. As our primary contract collection is
from Etherscan [7], an open platformwhere users can upload source
code, we conducted a two-stage validation to ensure the integrity
and completeness of the dataset. First, we confirm the contracts are
stored in a single file with all required meta details (i.e., address,
contact name, and creation date). Second, we verify each contract
is non-empty by inspecting the content within the outermost curly
brackets of each subcontract. After the validation, approximately
3% of the contracts are filtered out, comprising around 6,241 on the
Ethereum Mainnet and 2,240 on the Goerli Testnet.
Contract Data Extraction. To ensure an accessible representation
of contract data for further analysis, we developed a parser for So-
lidity smart contracts using ANTLR4 [6]. The parser first converts
smart contracts into token streams, extracting two types of infor-
mation for each token: its original text and its token type identifier.
We then extract code blocks such as subcontracts and functions
from the contract and compute the MD5 hash for each block after
type-2 normalization (i.e., remove white spaces and comments, and
rename variables) to facilitate further analysis. After this, each con-
tract will be saved as a JSON file containing all the extracted and
computed information as depicted in Figure 3. An example of the
complete output file can be found on our website [17].
Duplicated Contract Removal. The aim of this study is to deter-
mine the common practices in smart contract development. How-
ever, having multiple copies of the duplicated contracts with only
minor changes or no changes may skew the results. To address this,
we grouped contracts based on their contract-level MD5 hashes
after type-2 normalization. This ensures that contracts within the
same group can only have minor differences such as variable names.
As a result, 7,617 groups were identified to have more than one
contract. We then conducted a manual inspection for the groups
and confirmed that 90.17% are created by the same teams as detailed
in Section 3.3. Hence, to avoid the overrepresentation of similar
contracts and enhance the diversity of our datasets, we decided to
retain only the earliest version of each contract group.

In the end, we kept 189,229 distinct contract entries for Ethereum
Mainnet and 107,034 entries for Goerli Testnet. The processed data
were saved to a database for use in later code reuse analysis.

3.3 Contract Clone Decomposition (RQ1)
3.3.1 Experiments Setup. To gain insights into the compositions
of contracts and common practices in development, we commenced
our study by assessing contract-level code clones and quantifying
the various approaches to introducing subcontracts into contracts.
This lays the foundation for the subsequent analysis.

Initially, for the contract-level clone analysis, we examined the
duplicated contract groups identified during data preprocessing as
detailed in Section 3.2.2. A team of three smart contract auditors
conducted a manual inspection on a randomly selected sample
with 366 groups. The sample size was determined by Cochran’s
equation [29] together with a population correction [36]. During
the inspection, each auditor independently evaluated the reason
behind duplication. Collective discussions were then held until an
agreement was reached in cases where initial opinions varied.

Upon obtaining a comprehensive understanding of contract
clones, we directed our focus toward compositions of contracts.
Recognizing that Etherscan [7] includes externally imported sub-
contracts in the published contract source code, we integrated the
approaches to introducing external subcontracts into our analysis.
Upon identifying subcontract clones based on the pre-computed
MD5 hashes, we categorized them by their introduction approaches,
quantified the prevalences of these approaches, and traced the ori-
gins of externally introduced subcontracts.

3.3.2 Results and Discussion. Our findings for contract and sub-
contract clones are detailed separately in the following subsections.
Analysis ofContract Clones.The contract clone ratio in Ethereum
Mainnet and Goerli Testnet accounts for 14.50% and 18.42% respec-
tively. Out of these, a total of 7,617 contract groups in Ethereum
Mainnet were identified as duplicates during the data preprocessing
stage (i.e., contracts within each group have the same MD5 hash).
Upon conducting a manual inspection of the sample groups, we
discovered that about 89.16% of these groups are caused by version
iterations while 3.31% are linked to the use of generators. The rest
groups also seem to follow predefined templates, however, the exact
reason behind this still remains unclear due to the lack of explicit
statements or available online documentation. On the other hand,
90.17% of the groups consist of contracts deployed by the same
team or individuals. This was verified by investigating the record
of the author in the source code and the details of the contract
creator on Etherscan [7]. As a result of the inspections, we could
confirm that the identified groups do not contribute to the diversity
of contract development, hence, it is acceptable to be excluded from
our analysis to avoid an overrepresentation of similar contracts.

To gain more insights into the patterns and characteristics of
contract cloning, we analyzed the distribution of group size. De-
spite the high volume of identified groups, only 2 groups contain
over 1,000 contracts, with mere 40 groups exceeding 100 contracts.
This indicates that high-volume duplications are uncommon in the
dataset. In fact, such extensive duplications are mostly linked to
the use of token generators. For instance, the 2 groups with more
than 1,000 contracts are both the products of token generators. The
largest group with a size of 2,849 is generated by the ERC1155 to-
ken creator published by manifoldxyz [20] while the second largest
group with a size of 1,105 is due to the use of the ERC20 token
generator published by [30]. Apart from that, we noticed the exis-
tence of a type of contract that is created and executed on demand
with only minor changes. An example of this contract type is lock-
EtherPay, which is a token lock that only changes the address of
the beneficiary per deployment, which is discussed by Kondo et
al. [35]. On the other end of the spectrum, we observed that groups
due to version iterations usually have fewer than 5 contracts.

Demystifying the Composition and Code Reuse in Solidity Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Average percentage of subcontracts that in intro-
duced using various approaches

Self-Developed Imported Cloned

Ethereum Mainnet 16.43% 22.62% 60.95%
Goerli Testnet 17.68% 39.82% 42.51%

Moreover, we also quantified the purpose of the groups of con-
tracts during the inspection. Over 80% of the groups are for tokens
with various functionalities. Specifically, 66.10% of the groups are
for ERC20 tokens and 22.38% of the groups are for ERC721 tokens.

Finding 1: Among the 7,617 groups of duplicated contracts,
over 80% of the groups are related to tokens, with ERC20
tokens making up 66.10% of the groups. Large-scale contract
duplications usually come from using generators. Additionally,
90.17% consist of contracts created by the same team.

Analysis of Subcontract Clones.A smart contract includes around
10 subcontracts on average. These subcontracts can be classified
into three categories based on how they are introduced to a con-
tract: ① Imported subcontract. A subcontract that is introduced
by an import statement referring to an external source such as an
NPM package or a URL. ② Cloned subcontract. A subcontract
that is copied from another external source including earlier de-
ployed smart contracts and third-party packages without an import
statement referring to the source. ③ Self-developed subcontract.
A subcontract that is neither imported nor cloned from external
sources including earlier deployed smart contracts and third-party
packages. Among the three categories, ① and ② are considered
external subcontracts. In our case, we first confirmed imported sub-
contracts in each contract by checking its import statements. Next,
we conducted a subcontract-level code clone detection to identify
cloned subcontracts. In the end, we classified those not imported
or cloned as self-developed subcontracts.

To better understand the compositions of contracts, we then de-
termined the average distribution of the aforementioned three types
of subcontracts within smart contracts for both Ethereum Mainnet
and Goerli Testnet, as shown in Table 1. The result indicates that
cloning is the most prevalent approach to introduce subcontracts in
smart contract development, especially for contracts on Ethereum
Mainnet, where 60.95% of the subcontracts are cloned. Additionally,
fewer than 20% of the subcontracts are classified as self-developed,
which suggests that the current development of smart contracts
heavily relies on external solutions. Though the use of external so-
lutions helps to reduce development costs and improve code quality,
it may also introduce potential security risks and make it harder to
maintain the code in the long run.

Furthermore, we managed to trace the origins of some external
subcontracts introduced via different approaches. For imported
subcontracts, we focused on the two types of import statements to
introduce subcontracts from external sources as documented in [5]:
① Import from NPM packages using import statement followed by
the name of the NPM package; ② Import from URLs using import
statement followed by a URL such as Github [2], IPFS gateway [3],
and Swarm gateway [4]. In our dataset, we only discovered the
use of URLs referring to GitHub Repos which accounts for 0.13%

Imported
Subcontracts

(~31.22%)

Deployed Smart
Contracts

Cloned
Subcontracts

(~51.73%)

Self-Developed
Subcontracts

(~17.06%)

From Unknown
Sources

Third-Party
Packages

NPM

GitHub

...
Based on how introduced Identified

from on-chain
contracts

Third-party
subcontracts

(>60%)

Figure 4: Decomposition of deployed smart contracts

of imported subcontracts, indicating an imbalance in the use of
the two types of import statements in smart contract development.
In fact, about 51% of the identified GitHub Repos have published
NPM packages. This suggests that NPM acts as the package man-
ager for most third-party packages in smart contract development.
However, NPM is not optimized for managing Solidity libraries or
dependencies. For example, ① Lack of versioning and deployment
management. NPM does not help with the versioning of subcon-
tracts and deployment of smart contracts in various environments.
Important information such as the version of imported subcontracts
may be lost after the contract is published online as the log file
generated by NPM to record such information will not be published
together. ② Lack of security. NPM does not provide necessary se-
curity measures for managing Solidity libraries, which is crucial
for smart contracts to ensure the reliability of on-chain informa-
tion such as the integrity of DApps and the protection of valuable
assets. ③ Lack of compatibility. NPM was originally designed for
managing libraries, and as a result, it does not directly compatible
with Ethereum. To use NPM packages in Solidity smart contracts,
extra steps are needed, such as specifying the path of the imported
subcontract within the NPM package in the import statement.

While for cloned subcontracts, we discovered that over 56% of
the cloned subcontracts are sourced from third-party packages in
both Ethereum Mainnet and Goerli Testnet. This indicates a com-
mon practice of reusing subcontracts from third-party packages by
cloning instead of using import statements. In the view of develop-
ers, some possible reasons for this could be: ① Lack of awareness.
Developers may lack awareness or familiarity with available pack-
age management tools. ② Lack of trust. Developers may lack trust
in existing package management tools for smart contract develop-
ment, hence prefer to copy and paste directly from their reliable
sources. ② User-unfriendly. Developers may find it difficult to iden-
tify the path of a subcontract within a third-party package which
is needed by the import statements in Solidity. ③ Need for cus-
tomization. Developers may want to make modifications to the
subcontract, which is not allowed by using import statements.

Finding 2: We summarized the composition of smart con-
tracts in Figure 4. Smart contracts often consist of three types
of subcontracts: cloned (51.73%), imported (31.22%), and self-
developed (17.06%). However, over 56% of the cloned subcon-
tracts can be imported from third-party packages. Additionally,
we found that NPM contains most third-party packages for
smart contract development, though its use is not optimized.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu

Table 2: Top reused external subcontracts
Known Source Unknown Source

Ethereum Mainnet Goerli Testnet Ethereum Mainnet Goerli TestnetRank
Name Kind % Name Kind % Name Kind % Name Kind %

1 IERC20 interface 39.66% Context abstract 25.75% IUniswapV2Factory interface 25.79% ERC721Creator contract 5.30%
2 Context abstract 34.44% IERC165 interface 22.36% SafeMath library 22.20% VRFCoordinatorV2Interface interface 1.26%
3 IERC165 interface 28.47% IERC721Receiver interface 16.70% Context abstract 21.76% ERC721Creator contract 1.03%
4 IERC721Receiver interface 25.04% ERC165 abstract 15.12% IUniswapV2Router02 interface 12.58% IFactory interface 0.97%
5 ERC165 abstract 21.90% Address library 14.11% Ownable contract 12.39% SafeMath library 0.64%
6 IERC721Metadata interface 20.51% IERC721Metadata interface 12.63% ERC721Creator contract 10.51% Context abstract 0.58%
7 Strings library 20.39% Ownable abstract 11.28% IUniswapV2Router02 interface 8.70% ERC1155Creator contract 0.48%
8 IERC721 interface 17.32% IERC20 interface 10.55% Ownable contract 7.19% IERC20 interface 0.40%
9 Address library 17.08% IERC721 interface 10.30% SafeMathUint library 4.28% ContextMixin abstract 0.36%
10 Ownable abstract 16.27% Strings library 9.19% SafeMathInt library 4.20% PriceConverter library 0.35%

(1) The % in the table represents the proportion of use of the subcontract out of total contracts.

3.4 Analysis of Self-Developed Subcontracts
(RQ2)

3.4.1 Experiments Setup. To assess code reuse in self-developed
subcontracts, we implemented a two-step analysis. First, we con-
ducted a function-level clone detection within the subcontract to
determine the extent of code reuse in contract development. Second,
we quantified the percentage of unique functions in each subcon-
tract, providing insights to understand developers’ behavior of code
reuse in relation to the complexity of the contract.

Additionally, to comprehend the common usage of the reused
functions, we quantified these functions based on their function-
ality by identifying keywords in function names (e.g., mint and
transfer), the origins of functions if identifiable, and function types
(i.e., function, modifier, event, and constructor). We also conducted
case studies for the most frequently reused functions to better un-
derstand the trends of function-level code reuse.

3.4.2 Results and Discussion. The result for function reuses in
self-developed subcontracts is presented in Figure 5 and Figure 6.
Analysis of Function Clones. The result reveals consistent func-
tion reuse patterns for self-developed subcontracts across Ethereum
Mainnet and Goerli Testnet as suggested in Figure 5. Approximately
50% of the identified self-developed subcontracts contain less than
10% unique functions, denoting that the reuse of code at the level of
functions is also a common practice in smart contract development.
Despite this, while cataloging function usage frequency within self-
developed subcontracts, we found that only 27.10% and 28.05% of
functions were reused for Ethereum Mainnet and Goerli Testnet
respectively. This indicates that the commonly reused functions
tend to be concentrated on a small set of functions.

Furthermore, in exploring the correlation between the number
of unique functions and the total function count in self-developed
subcontracts, we found self-developed subcontracts with fewer
functions have a higher ratio of unique functions, as depicted in Fig-
ure 6. Particularly, self-developed subcontracts with less than 10
functions showed the highest unique function ratio (40.53%). 72
self-developed subcontracts are identified to have 100% unique
functions, 56.94% of which only have one function. However, as
more functions are required in self-developed subcontracts, the
percentage of unique functions drops. This indicates that develop-
ers tend to reuse more code blocks from external sources during
development rather than writing everything from scratch when
the required functionality becomes more complicated. While such

Figure 5: Unique functions in self-developed subcontracts
for both Ethereum Mainnet and Goerli Testnet

Figure 6: Average percentage of unique functions with re-
spect to the total functions in self-developed subcontracts in
smart contracts

code reuse is usually to mitigate potential vulnerabilities, the safety
of external functions may not be guaranteed since only around 8%
are from well-established packages. Additionally, integrating these
functions within the subcontract could be challenging, especially
when interactions between functions need to be considered.

Finding 3: Code reuse is a common practice at the function
level, especially when the required functionality is compli-
cated. Additionally, we noticed consistent reuse of a small
set of functions across subcontracts, reflecting common func-
tional requirements during development.

Analysis of Function Usage. The majority of unique functions
and reused functions are standard functions. A substantial por-
tion of unique functions is constructors, taking around 21.56% in
Ethereum Mainnet and 13.64% in Goerli Testnet. Constructors are
a special type of function that is called during contract creation to
initialize the contract and set the initial state. This implies that the

Demystifying the Composition and Code Reuse in Solidity Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

contract initialization process often required specific customization
to cater to the particular needs of individual smart contracts.

On the other hand, reused functions often represent commonly
needed functionalities. We found that over 20% of these functions
are getters and setters, which are widely used to access and modify
the current state of the contract. Functions related to minting and
transferring also make up a significant portion of both reused and
unique functions, accounting for more than 10% in total.

In fact, the balance between unique and reused functions in
smart contracts appears to be a blend of custom-tailored opera-
tions and widely used standard functionalities. As smart contract
development continues to evolve, understanding the interplay and
appropriate application of these unique and reused functions will
be crucial in optimizing contract efficiency and effectiveness.

Finding 4: Both unique and reused functions are primarily
standard functions, with constructors constituting a notable
portion of unique functions, indicating frequent customization
requirements during contract initialization.

3.5 Analysis of External Subcontracts (RQ3)
3.5.1 Experiments Setup. To comprehend the significance and
implications of external subcontracts, which account for 80% of the
total, we conducted experiments from three aspects. ① Analysis
of subcontract type. To understand common usages of external
subcontracts, we quantified the use of the four types of subcontract
that are defined for various usage (i.e., contract, abstract, interface,
and library). Furthermore, we examined the inconsistency in the
use of subcontract types. ② Analysis of subcontract usage fre-
quency. To gain insights into the trends of external subcontract
utilization, we ranked the subcontracts based on their frequency
across our dataset and then conducted case studies with the most
reused contract examples. ③ Overview of third-party package.
To comprehend the usage of existing third-party packages, we ana-
lyzed package usage frequency and uncovered potential code clones
across packages by conducting a subcontract-level clone detection
on all recognized third-party packages.

3.5.2 Results and Discussion. We present our findings for the
three stages in the three subsections below separately.
Analysis of Subcontract Type. The usage frequency of these four
types of subcontracts is detailed in Table 3. Among the four types of
subcontracts, interface takes the most percentage in both Ethereum
Mainnet (36.59%) and Goerli Testnet (34.85%). This is reasonable
since interface is usually used as the template of well-established
standards (e.g., EIPs) and protocols (e.g. Uniswap [19]). Hence, the
use of interface often indicates reusing established standards and
protocols to reduce development costs while ensuring consistency
and interoperability between contracts.

While examining external subcontracts with the type of contract,
which account for over 30% of the total subcontracts in both net-
works, we observed an inconsistent use of subcontract types. One
case study we provide in this paper is regarding SafeMath, a utility
library for common safe math operations. In the context of smart
contract development, library refers to a reusable code block for
multiple contracts to perform common tasks without storage while
contract is a self-contained unit of logic to execute its own functions

Table 3: Percentage of external subcontracts for various types
Interface Contract Abstract Library

Ethereum Mainnet 36.59% 34.86% 16.11% 12.45%
Goerli Testnet 34.85% 34.28% 16.99% 13.88%

with storage. Hence, SafeMath is expected to be defined as library
here. However, it was incorrectly defined as contract in 10% of the
over 26,000 definitions. We manually checked the subcontracts de-
fined as contract and noticed the declarations that SafemMath is
a library in code comments. Similarly, IERC20 is meant to be an
interface to provide the definition of EIP20 [13] but was defined as
contract without function implementations in some contracts. In
fact, over 93% of the identified cases involve the type of contract.

These inconsistencies could stem from developer confusion re-
garding the usage of subcontract types, potentially leading to com-
patibility issues, difficulties in maintenance, and increased vulnera-
bility risks. The flexible usage of contract type may contribute to
this confusion since it can mimic the functionalities of interface,
abstract, and library. In fact, over 93% of the identified cases involve
the type of contract. Though various types of subcontracts are ex-
pected to help developers to organize code more efficiently while
improving the maintainability and readability of code blocks, the in-
consistency in the use of subcontract types brings more challenges
to smart contract management.

Finding 5: While the 35% of external subcontracts to be in-
terface indicates a good practice to follow well-established
standards and protocols, the usage of subcontracts with the
type of contract, accounting for another 35% of the total sub-
contracts, reveals the inconsistency in the use of subcontract
types, which brings challenges to smart contract management.

Analysis of Subcontract Usage Frequency. The result of top-
reused external subcontracts is presented in Table 2. Here, by sub-
contracts with known sources, we refer to imported subcontracts
and cloned subcontracts sourced from our collected third-party
packages. While subcontracts with unknown sources are cloned
subcontracts with their origins not confirmed yet. Due to the page
limit, we only provide the top 10 reused subcontracts in this paper
while the rest will be available on our website [17].

The result suggests that third-party subcontracts are used more
frequently compared to those from unknown sources, particularly
in Goerli Testnet where the most frequently reused subcontract
from unknown sources only appears in 5.3% contracts, which is
lower than the 10th most frequently reused third-party subcontract.
Moreover, the frequent use of IERC20 and IERC721 in third-party
subcontracts highlights that one of the most popular applications
in smart contract development is the creation of tokens including
both fungible (ERC20) and non-fungible (ERC721) tokens.

In addition, though subcontracts with the type of contract take
around 35% in external subcontracts as shown in Table 3, most
of them are not frequently reused subcontracts. In the top 1,000
reused external subcontracts, subcontracts with the types of ab-
stract and library make up 50% of the total while interface takes
another 32%. This suggests a good practice in smart contract de-
velopment since subcontracts with the types of interface, library,

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu

Table 4: Top reused third-party packages
Import Clone Total

Ethereum Mainnet

@openzeppelin/contracts 29.59% @openzeppelin/contracts 43.90% @openzeppelin/contracts 73.46%
@openzeppelin/contracts-upgradeable 4.25% @aragon/apps-vault 3.52% @openzeppelin/contracts-upgradeable 4.50%
erc721a 2.83% @pancakeswap/pancake-swap-lib 1.52% erc721a 3.72%
hardhat 1.15% @pooltogether/pooltogether-contracts 0.97% @aragon/apps-vault 3.52%
@uniswap/v2-periphery 0.55% erc721a 0.89% @pancakeswap/pancake-swap-lib 1.52%

Goerli Testnet

@openzeppelin/contracts 47.97% @openzeppelin/contracts 0.10% @openzeppelin/contracts 48.07%
@openzeppelin/contracts-upgradeable 10.40% @flair-sdk/contracts 0.04% @openzeppelin/contracts-upgradeable 10.42%
hardhat 5.78% synthetix 0.04% hardhat 5.78%
erc721a 3.54% @thirdweb-dev/contracts 0.04% erc721a 3.54%
@uniswap/v3-core 1.05% @connext/nxtp-contracts 0.03% @uniswap/v3-core 1.05%

and abstract are expected to be reused code blocks. It is hoped that
more such reusable code blocks can be extracted or created in the
future for safe smart contract development. Furthermore, it is ob-
served that some subcontracts often appear together. For instance,
we noticed that IERC721 and IERC165 always come in pairs. This
is because IERC721 is an interface for standard non-fungible token
development, which inherits from IERC165 to make sure compati-
bility between interfaces. This suggests the potential to discover
development patterns for smart contracts.

Finding 6: Subcontracts from well-established third parties
are used more frequently than those from unknown sources.
The most frequently reused subcontracts are well-defined
reusable subcontracts with types of interface, library, and ab-
stract, making up 82% in the top 1,000 reused subcontracts.

Overview of Third-Party Packages. The usage frequency of the
third-party packages is summarized in Table 4. The result high-
lights the wide use of OpenZeppelin [10], the packages for secure
smart contract development. On Ethereum Mainnet, over 73% of
contracts introduced subcontracts from OpenZeppelin packages. In
fact, the top 10 reused third-party subcontracts in Table 2 for both
networks are all from OpenZeppelin packages. Apart from that,
we identified the frequent use of erc721a, a package that explores
gas optimization in batch-minting NFTs for ERC721 tokens. The
rest of the frequently reused third-party packages are either for
testing (i.e., Hardhat [16]) or token exchange (i.e., Uniswap [19]).
Additionally, since a third-party subcontract can be either imported
or cloned to a smart contract, we also quantified the use of third-
party packages introduced via different approaches, from where
we noticed that contracts in Ethereum Mainnet tend to clone sub-
contracts from OpenZeppelin packages instead of using import
statements. Apart from that, the use of some other packages was
highlighted.@aragon/apps-vault and@thirdweb-dev/contracts are
for web applications while@pancakeswap/pancake-swap-lib is an
extension of Uniswap focusing on safety and gas efficiency.

During the examination of third-party packages, the follow-
ing three types of packages were summarized: ① Packages follow-
ing EIPs for safe smart contract development (e.g. OpenZeppelin);
② Packages to define or to be used under specific protocols (e.g.
Uniswap); ③ Packages for utility and testing (e.g. Hardhat [16]).
In our identified third-party packages, 25% of packages follow EIP,
the standards suggesting potential new features or processes for
Ethereum [8]. The rest packages are either used under specific
protocols (65.31%) or for testing and utility (9.69%).

Moreover, to have a better idea regarding the extent of clones in
third-party packages, we also performed a subcontract-level clone
detection for all identified third-party subcontracts, through which
we found 139 subcontracts that appear in more than 10 libraries,
38.85% of which are interface. Apart from that, about 90% of the
reused subcontracts are sourced fromOpenZeppelin. In fact, around
36% of our collected packages are extensions of OpenZeppelin. This
also suggests the great influence of OpenZeppelin in smart contract
development. While examining the rest 10% reused subcontracts
not related to OpenZeppelin, we discovered another group of third-
party packages that focus on the decentralized cryptocurrency
exchange, which is not covered by OpenZeppelin.

As smart contract development heavily relies on OpenZeppelin
packages, it increases the risk of a single point of failure if OpenZep-
pelin’s code or systems were compromised. In fact, we identified
an existing dependency management problem regarding OpenZep-
pelin. While examining OpenZeppelin packages, we noticed an
iteration in the name of the packages from openzeppelin-solidity to
@openzeppelin/contracts. Both package names are still in use in cur-
rent development, though they link to the same package. Moreover,
while @openzeppelin/contracts is the current official name and has
been widely used, the name appearing in the package-lock.json file
generated by NPM is still openzeppelin-solidity. This may result in
a miss in vulnerability detections if the vulnerability detection is
conducted based on the package-lock.json file. Apart from that, the
prevalence of OpenZeppelin indicates the need for well-established
subcontracts to build secure and reliable smart contracts.

Finding 7: OpenZeppelin [10] has a great influence on third-
party subcontracts in smart contract development. Around
90% of the imported third-party subcontracts are sourced from
OpenZeppelin, and around 36% of our identified third-party
packages are extensions of OpenZeppelin. This could be risky
if an OpenZeppelin-related vulnerability is reported.

3.6 Development Patterns (RQ4)
3.6.1 Experiments Setup. Inspired by the findings of common
practices in smart contract development, we further examined the
existence of development patterns in our dataset with frequent item-
set (FP) mining [31], a well-established technique in data mining.
Specifically, each contract is represented by the pre-computed MD5
hashes of its subcontracts, serving as FP mining input to identify
subcontract sets that frequently appear together.

To validate the obtained subcontract sets, a manual inspection
is conducted with three smart contract auditors. Each auditor first

Demystifying the Composition and Code Reuse in Solidity Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 5: Extracted development patterns
Rank Pattern Details Protocols Context Problem Solution Frequency Day

Range

1 IERC721Metadata, ERC165, IERC721Receiver, IERC721,
Strings, Address, Context EIP721,

EIP165
Token creation Standard token to be owned and

traded

Use the ERC721 standard with the Metadata and
Receiver interfaces for rich metadata and secure
receiving functionality

63,316
(13.72%) 698 days

2 IUniswapV2Router02, IUniswapV2Factory, IERC20,
Context, Ownable EIP20,

Uniswap
Token swap Need to control ownerships Use Uniswap V2’s interfaces with the Ownable

contract for permissions
62,855
(21.34%) 699 days

3 IERC721Enumerable, IERC721Metadata, ERC165,
IERC721Receiver, IERC721, Strings, Address, Context EIP721,

EIP165
Token creation Need to enumerate all owned

tokens
Use the ERC721 Enumerable extension to allow for
token enumeration

53,679
(8.84%) 698 days

4 IUniswapV2Pair, IUniswapV2Router02,
IUniswapV2Factory, IERC20, Context, Ownable EIP20,

Uniswap
Token swap Need to interact with a specific pair

of tokens with ownership controls
Use Uniswap V2’s Pair and Factory interfaces with the
Ownable contract for permissions

14,869
(7.86%) 694 days

5 Address, SafeMath, IERC20, Context, Ownable EIP20 Token creation Need for safe math operations and
ownership controls

Use the SafeMath library for safe arithmetic operations
and the Ownable contract for permissions

14,012
(7.40%) 699 days

6 StorageSlot, Proxy, Address EIP1967 Proxy contract Need to upgrade contracts with
storing the current state

Use the Proxy pattern along with StorageSlot for
preserving the contract’s state during upgrades

13,873
(7.33%) 604 days

7 ERC721Creator, StorageSlot, Proxy, Address EIP721 Proxy contract Need to upgrade ERC721 token
with storing the current state

Use ERC721Creator for creating tokens and the Proxy
pattern with StorageSlot for upgradability

12,532
(6.62%) 388 days

8 ReentrancyGuard, IERC721Metadata, ERC165,
IERC721Receiver, IERC721, Strings, Address, Context EIP721,

EIP165
Token creation Prevent reentrancy attack Use the ReentrancyGuard contract to prevent

reentrancy attack
8,579
(4.53%) 684 days

9 MerkleProof, IERC721Metadata, ERC165,
IERC721Receiver, IERC721, Address, Context EIP721,

EIP165
Token creation Need to create and validate proofs Use the MerkleProof contract to create and validate

proofs
4,806
(2.54%) 645 days

independently evaluates if these subcontract sets can be considered
as patterns. Disagreements are revisited via group discussion, and
auditors can alter their decision once post-discussion. We then
collate the results, identifying development patterns following the
rule that the majority wins. We further validate the patterns with
frequency and date range. Frequency quantifies the appearance of
a pattern while date range represents the time span from the first
to the last appearance of a pattern. These provide insights into the
prevalence and longevity of patterns in contract development.

3.6.2 Results and Discussion. We finally identified 61 devel-
opment patterns, 6 of which appeared over 10,000 times and an
additional 13 appeared more than 1,000 times in our dataset. The
top 9 development patterns are presented in Table 5 while the full
list of identified patterns is available on our website [17].

Among the identified patterns, over 63% are related to standard
token creation, specifically, 74% involving ERC721 tokens. For ex-
ample, the 3rd pattern is to create enumerable tokens, the 8th is to
prevent reentrancy attacks [37], one of themost common attacks for
smart contracts, and the 9th is to create and validate proofs. Other
patterns are related to proxy contracts and token swaps, accounting
for 20.31% and 10.94% respectively. The appearance of patterns sug-
gests that the creation of tokens, token swaps, and proxy contracts
have been highly standardized, reflecting the common functional
requirements and architectural paradigm in development.

Examples of contract addresses for each pattern can be found
on our website [17] to help understand the application of patterns
in real-world development. For example, the second pattern is to
facilitate the ERC20 token swap via the Uniswap V2 protocol [19].
To utilize this pattern, an additional customized subcontract is often
required to define token details. An example is shown in Listing 1, in
which the token name, symbol, and other relevant information are
defined. In fact, this can be handled by low-code development easily.
Since this customized subcontract usually follows a similar pattern,
user-extracted information can be integrated into a template and
merged together with the pre-defined pattern.

Additionally, we also conducted the same analysis in smart con-
tracts from Goerli Testnet. Apart from the already identified de-
velopment patterns in Ethereum Mainnet, Goerli Testnet contains
development patterns sourced from online tutorials. For example,

[21] is a template for simple storage provided by an online course,
which appears over 800 times in our dataset. While using patterns
can improve code quality and mitigate potential vulnerabilities, it
is crucial to ensure the safety of the patterns.
1 pragma solidity ^0.8.0;
2 contract ThePathless is Context , IERC20 , Ownable {
3 using SafeMath for uint256;
4 string private constant _name = "The Pathless";
5 string private constant _symbol = "Pathless";
6
7 constructor () {
8 _rOwned[_msgSender ()] = _rTotal;
9 IUniswapV2Router02 _uniswapV2Router =

IUniswapV2Router02 (0
x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);

10 uniswapV2Router = _uniswapV2Router;
11 uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.

factory ()).createPair(address(this),
_uniswapV2Router.WETH());

12 _isExcludedFromFee[owner()] = true;
13 _isExcludedFromFee[address(this)] = true;
14 _isExcludedFromFee[_developmentAddress] = true;
15 _isExcludedFromFee[_marketingAddress] = true;
16 emit Transfer(address (0), _msgSender (), _tTotal);
17 } // main body
18 }

Listing 1: An application example for Rank 2 pattern
in Table 5

During our inspections, the patterns we identified are gener-
ally secured since most subcontracts are from audited third-party
packages such as Openzeppelin [10] and Uniswap [19]. In addition,
most identified patterns follow EIPs, which helps to enhance their
security, interoperability, and compliance with community stan-
dards. However, the requirement of customization for many of the
patterns could potentially introduce risks if not properly handled.

Finding 8: We identified 61 development patterns. Specifi-
cally, token creation, proxy contracts, and token swaps make
up 68.75%, 20.31%, and 10.34% of the identified patterns, signi-
fying high standardization in these areas.

4 IMPLICATIONS AND LESSONS
4.1 Result Summary
Unlike existing works ignoring the common practices of reusing ex-
ternal subcontracts, in this study, we investigate code reuse in smart
contracts with considerations of dependency management. First,

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu

we statistically confirmed the high ratio of reusing external sub-
contracts (82.94%), aligning with previous works [33, 35]. However,
after investigating their introduction approaches, we notice that
31.22% of subcontracts were introduced by imports instead of sim-
ple code clones. Next, we divided subcontracts into self-developed
(17.06%) and external ones for further code reuse analysis. For in-
stance, we observe the reliance on function reuse increases when
the number of functions in self-developed subcontracts grows. In
addition, over 35% of the external subcontracts are interface, indicat-
ing a trend toward adhering to established standards and protocols.
Yet, subcontract types are sometimes misused, posing challenges in
code management. Moreover, OpenZeppelin influences around 90%
of the imported external subcontracts, highlighting its prominent
role in contract development. Lastly, we identified 61 development
patterns for token creation (68.75%), proxy contracts (20.31%), and
token swaps (10.34%), reflecting areas with high standardization.

4.2 Lessons Learned
In this section, we summarize the discovered challenges in smart
contract development and proposed possible solutions.
For Contract Developers.① Though various approaches are avail-
able to introduce external subcontracts as discussed in Section 3.3,
we suggest avoiding using URLs to import external subcontracts
unless the URL has been thoroughly verified and audited for se-
curity development. This is to avoid introducing untrustworthy
code blocks into contracts due to malicious URLs or compromised
subcontracts. ② As discussed in Section 3.3, over 80% subcontracts
are introduced externally in smart contracts. However, the docu-
mentation of such usage often misses, especially after on chains.
This brings challenges in the management of external subcontracts
and more critically, in the identification and mitigation of vulner-
abilities in external subcontracts. Hence, we would recommend
including basic information about each subcontract such as their
origins and versions if available in the published source code. This
practice would help with code maintenance and management of
dependency downstream. ③ The inconsistent use of subcontract
types pointed out in Section 3.5 may further complicate code orga-
nization and management instead, indicating a need for enhanced
standardization in contract development.
For Third-party Auditors. ① Considering the high code reuse
ratio (82.94%) highlighted in Section 3.3, it may help to boost the
efficiency of audits by establishing a standardized knowledge-based
vulnerability database that can be accessed and contributed by ev-
ery auditor, especially for frequently reused components. Once the
database is established, the relevant information for external com-
ponents can be identified by code clone detection, avoiding repeated
audits on the same components. ② Given the heavy reliance on
external subcontracts, especially those from well-established third
parties as mentioned in Section 3.5, it is important to regularly audit
the packages to ensure their security and reliability. Moreover, third-
party packages are not used as a whole in contract development,
instead, developers only import required subcontracts. Hence, it is
important to link identified vulnerabilities to specific subcontracts
or functions instead of packages. ③ Though there are auditions
done with the published packages with specific smart contract ap-
plications, we do not see any auditions with the frequently used

development patterns as identified in Section 3.6. However, it is
important to continuously monitor and manage such patterns to
make sure safety, maintainability, and reliability.
For the Community.While most third-party packages are man-
aged under NPM as detailed in Section 3.3, it would be good to have
a specialized package manager for smart contract development to
better manage the dependencies of smart contracts during develop-
ment and after deployment. As a specialized package manager for
Solidity smart contracts, it would be good to have: ① Automated
security analysis. The package manager should continuously ac-
cess the security and use of the third-party packages. ② Package
versioning. The package manager should have a robust versioning
system to keep track of the updates and changes in smart contract
packages. ③ Easy integration. The package manager should be easy
to integrate with popular development tools and environments to
make smart contract development smoother. ④ Package deploy-
ment. The package manager is expected to continuously monitor
and manage the used third-party subcontracts even after deploy-
ment. Additionally, considering the dominance of OpenZeppelin
packages identified in Section 3.5, it would be beneficial to encour-
age and support the development of alternative and secure packages
to provide more options for smart contract developers.

4.3 Future Research Directions
Our findings suggest several directions for future research. First,
the prevalent code reuse in smart contracts necessitates studying
vulnerability spread across chains and the efficiency of countermea-
sures. There is potential in developing detectors for clone-based
vulnerabilities to auto-patch risky and employing binary code clone
detection to improve vulnerability identification. Second, extending
our analysis to include type-3 clones could provide deeper insights
into diverse implementations of identical functionalities. The usage
scenarios for various implementations could be further studied.
In addition, our analysis can be extended by including multiple
blockchain networks (e.g., BNB Chain [24] and Polygon [22]). This
will enhance our understanding of contract characteristics and
cross-chain interactions, enriching our grasp on the broader smart
contract ecosystem. Lastly, with the development patterns provided
in Section 3.6, their effects on contract robustness and risks and
the evolution of the patterns could be further investigated. More-
over, investigating functional-level patterns could offer insights into
subcontract versions and boost low-code development flexibility.

4.4 Threats to Validity
4.4.1 Internal Validity. The choice of type-2 clones may lead
to false similarities in clone detection. In this study, we chose to
focus on type-2 clones because they offer a balance between the
rigor of detection and the richness of insight. For example, our
duplicated contract analysis in Section 3.3 can be effectively done
with type-2 clones, but unattainable with type-1 clones. However,
we also acknowledge the risk of identifying false similarities with
type-2 clones due to the renaming of variable names. To mitigate
this, we have reconducted experiments with type-1 clone detection
as a baseline and the result proves that our initial findings still hold.

4.4.2 External Validity. A potential threat is related to the rep-
resentativeness of the dataset. Collecting the source code of all

Demystifying the Composition and Code Reuse in Solidity Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

deployed contracts is challenging due to the frequent lack of public
release and the numerous existing blockchain networks. To miti-
gate this, we expand our dataset by collecting contracts from two
different Ethereum networks (i.e., the Mainnet and Goerli Testnet)
and identified third-party packages.

4.4.3 Construct Validity. The identified patterns in Section 3.6
might be influenced by our subjective interpretations. We miti-
gate this with a rigorous inspection process involving three smart
contract auditors and group discussions for cross-verification. We
then revalidate the results using frequency and date range to mea-
sure the prevalence and longevity of identified patterns. Through
these verifications, we ensure that these development patterns are
prevalent and can be applied in real-world applications. Similar
inspections are also conducted during duplicated contract analysis
in Section 3.3. The result is further verified with the information of
creators from source code and Etherscan [7]. The records for both
manual inspections are available on our website [17].

5 RELATEDWORK
Empirical Studies on Smart Contracts. Several empirical stud-
ies on code reuse in smart contracts have been done in the past
few years with focuses on the characteristics [33, 35] and im-
pacts [28, 41] of clones. Kondo et al. [35] reported that 79.2% of
the subcontracts are type-1 and type-2 clones in Ethereum with
a tree-based clone detector called Deckard [32]. While Khan [33]
further extended Kondo’s study to the granularity of functions and
type-3 clones. Their result indicated a 30.13% overall clone ratio at
the function level, out of which about 90% belong to type-1 clones.
Chen et al. [28] studied the impacts of code reuse in smart contracts
and identified the common revisions to reuse external subcontracts.
Pierro et al. [41] classified the clones in smart contract development
and proposed some possible explanations for trends of clones in
the view of smart contract developers. While previous studies con-
cluded a high clone ratio in smart contracts, they overlooked that
many external subcontracts are directly imported but published
together with the source code. In contrast, we take the introduc-
tion approaches into consideration during analysis. This allows
us to better comprehend the existing regulations to use external
components and uncover that over 20% of the clones are imported.

Additionally, there are a few studies discussing the current smart
contract development from various aspects. Zou et al. [51] summa-
rized the major challenges for developers in smart contract develop-
ment and discussed the possible directions to improve the quality
of current smart contract development. Chen et al. [27] studied
the maintenance-related concerns for deployed smart contracts
and discussed how to maintain smart contract-based projects from
developers’ views. Several studies have been to discuss the con-
cerns in smart contract development such as security [26, 43, 45],
and maintenance [44]. However, these studies only focused on a
single granularity (i.e., either subcontracts or functions), thereby
leaving the composition of smart contracts under-explored. Our
study bridges this gap by providing a detailed understanding of
smart contract composition and conducting code reuse for multiple
granularities (i.e. contract, subcontract, and function). For each
level of granularity, we manage to discover some common practices
in code reuse and functional requirements.

Development Patterns in Smart Contract Development.A few
studies related to the existing development patterns have been done
in recent years. Marino and Juels [38] proposed design patterns for
altering and undoing smart contracts. Bartoletti and Pompianu [25]
manually checked the source code of 811 verified smart contracts
from Etherescan, through which they summarized the purposes
of smart contracts (e.g. financial, wallet, etc.) and existing design
patterns including token, authorization, and oracle. Similar design
patterns were also discussed in Worley’s work [47]. Oliva et al. [40]
investigated the activity level of contracts and summarized the
main usage of smart contracts. Wohrer et al. [46] elaborated several
common security patterns and described solutions to typical attack
scenarios. Zheng et al. [49] summarized the whole life cycle of
smart contract development, including contract creation, deploy-
ment, execution, and completion. Moreover, they also discussed the
challenges in the current development cycle and the difference be-
tween smart contract platforms including Ethereum. Another work
from Zheng [50] described the architecture of blockchain and con-
sensus algorithms and introduced the development of applications
based on blockchain. Mohanta et al. [39] summarized seven use
cases for smart contracts, including IoT, supply chain management,
and healthcare systems. Despite these contributions, previous stud-
ies failed to provide concrete development patterns but focused on
the general steps for various functional requirements. In our study,
we extract development patterns as sets of subcontracts that could
be potentially used for low-code developments. This also reflects
the areas with high standardization in smart contract development.

6 CONCLUSION
This study discusses code reuse in Solidity smart contracts from
the view of contract decomposition on Ethereum blockchains. To
understand the compositions of contracts, we first quantified three
common approaches to introduce subcontracts, through which we
also compiled a list of commonly used third-party packages in smart
contract development. We then conducted separate code reuse
analyses for self-developed and external subcontracts to dissect the
most frequently reused code blocks and their functional properties.
To gain insights into common practices in contract development,
we also extracted 61 frequently reused development patterns. Lastly,
we discussed the current challenges in managing smart contracts
and proposed possible solutions.

7 DATA AVAILABILITY
The detailed analysis results that support the findings of this study
are available in [17].

ACKNOWLEDGEMENT
This research is supported by the National Research Foundation,
Singapore, and the Cyber Security Agency under its National Cyber-
security R&D Programme (NCRP25-P04-TAICeN). Any opinions,
findings, and conclusions, or recommendations expressed in this
material are those of the author(s) and do not reflect the views of
the National Research Foundation, Singapore and Cyber Security
Agency of Singapore.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu

REFERENCES
[1] 2022. https://github.com/ethereum/solidity.
[2] 2022. https://github.com/.
[3] 2022. https://docs.ipfs.tech/concepts/ipfs-gateway/.
[4] 2022. https://gateway.ethswarm.org/.
[5] 2022. https://remix-ide.readthedocs.io/en/latest/import.html.
[6] 2022. ANTLR v4. https://github.com/antlr/antlr4 original-date: 2010-02-

04T01:36:28Z.
[7] 2022. Ethereum (ETH) Blockchain Explorer. http://etherscan.io/.
[8] 2022. Ethereum Improvement Proposals (EIPs). https://github.com/ethereum/

EIPs original-date: 2015-10-26T13:57:23Z.
[9] 2022. npm. https://www.npmjs.com/
[10] 2022. OpenZeppelin/openzeppelin-contracts. https://github.com/OpenZeppelin/

openzeppelin-contracts original-date: 2016-08-01T20:54:54Z.
[11] 2023. anyswap/multichain-smart-contracts: multichain smart contracts. https:

//github.com/anyswap/multichain-smart-contracts. (Accessed on 01/23/2023).
[12] 2023. Contracts — Solidity 0.8.17 documentation. https://docs.soliditylang.org/

en/v0.8.17/contracts.html. (Accessed on 01/29/2023).
[13] 2023. EIPs/eip-20.md at master · ethereum/EIPs. https://github.com/ethereum/

EIPs/blob/master/EIPS/eip-20.md. (Accessed on 01/31/2023).
[14] 2023. EXPLAINED: THEMULTICHAIN HACK (JANUARY 2022). https://halborn.

com/explained-the-multichain-hack-january-2022/. (Accessed on 01/23/2023).
[15] 2023. goerli.etherscan.io. https://goerli.etherscan.io/. (Accessed on 01/23/2023).
[16] 2023. Hardhat | Ethereum development environment for professionals by Nomic

Foundation. https://hardhat.org/. (Accessed on 01/27/2023).
[17] 2023. Home. https://sites.google.com/view/solidity-contract-analysis/home.

(Accessed on 02/02/2023).
[18] 2023. Home | ethereum.org. https://ethereum.org/en/. (Accessed on 01/20/2023).
[19] 2023. Home | Uniswap Protocol. https://uniswap.org/. (Accessed on 01/27/2023).
[20] 2023. manifoldxyz/creator-core-solidity. https://github.com/manifoldxyz/creator-

core-solidity. (Accessed on 06/11/2023).
[21] 2023. PatrickAlphaC/storage-factory-fcc. https://github.com/PatrickAlphaC/

storage-factory-fcc. (Accessed on 02/01/2023).
[22] 2023. polygon.technology. https://polygon.technology/. (Accessed on

06/25/2023).
[23] 2023. Smart contract - Wikipedia. https://en.wikipedia.org/wiki/Smart_contract.

(Accessed on 01/24/2023).
[24] 2023. www.bnbchain.org. https://www.bnbchain.org/. (Accessed on 06/25/2023).
[25] Massimo Bartoletti and Livio Pompianu. 2017. An Empirical Analysis of Smart

Contracts: Platforms, Applications, and Design Patterns. Lecture Notes in Com-
puter Science (03 2017). https://doi.org/10.1007/978-3-319-70278-0_31

[26] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smarag-
dakis. 2020. Ethainter: a smart contract security analyzer for composite vulner-
abilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 454–469.

[27] Jiachi Chen, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2021.
Maintenance-related concerns for post-deployed Ethereum smart contract devel-
opment: issues, techniques, and future challenges. Empirical Software Engineering
26, 6 (2021), 1–44.

[28] Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng. 2021.
Understanding Code Reuse in Smart Contracts. 470–479. https://doi.org/10.1109/
SANER50967.2021.00050

[29] W. G. Cochran. 1934. The distribution of quadratic forms in a normal system,
with applications to the analysis of covariance. Mathematical Proceedings of the
Cambridge Philosophical Society 30, 2 (1934), 178–191. https://doi.org/10.1017/
S0305004100016595

[30] Token Generator. 2023. Token Generator | Create ERC20 or BEP20 Token | Smart-
Contracts Tools. https://www.smartcontracts.tools/token-generator/. (Accessed
on 02/03/2023).

[31] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern
mining: current status and future directions. Datamining and knowledge discovery
15, 1 (2007), 55–86.

[32] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 96–105.

[33] Faizan Khan, Istvan David, Daniel Varro, and Shane McIntosh. 2022. Code
Cloning in Smart Contracts on the Ethereum Platform: An Extended Replication

Study. IEEE Transactions on Software Engineering (2022), 1–13. https://doi.org/
10.1109/TSE.2022.3207428 Conference Name: IEEE Transactions on Software
Engineering.

[34] Shafaq Naheed Khan, Faiza Loukil, Chirine Ghedira-Guegan, Elhadj Benkhelifa,
and Anoud Bani-Hani. 2021. Blockchain smart contracts: Applications, challenges,
and future trends. Peer-to-peer Networking and Applications 14, 5 (2021), 2901–
2925.

[35] Masanari Kondo, GustavoA. Oliva, ZhenMing (Jack) Jiang, Ahmed E. Hassan, and
Osamu Mizuno. 2020. Code cloning in smart contracts: a case study on verified
contracts from the Ethereum blockchain platform. Empirical Software Engineering
25, 6 (Nov. 2020), 4617–4675. https://doi.org/10.1007/s10664-020-09852-5

[36] Paul Levy. 2014. Finite Population Correction. https://doi.org/10.1002/
9781118445112.stat05700

[37] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
ReGuard: Finding Reentrancy Bugs in Smart Contracts. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings
(Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery, New
York, NY, USA, 65–68. https://doi.org/10.1145/3183440.3183495

[38] Bill Marino and Ari Juels. 2016. Setting Standards for Altering and Undoing Smart
Contracts, Vol. 9718. 151–166. https://doi.org/10.1007/978-3-319-42019-6_10

[39] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. 2018.
An Overview of Smart Contract and Use Cases in Blockchain Technology. In
2018 9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). 1–4. https://doi.org/10.1109/ICCCNT.2018.8494045

[40] Gustavo A. Oliva, Ahmed E. Hassan, and Zhen Ming (Jack) Jiang. 2020. An ex-
ploratory study of smart contracts in the Ethereum blockchain platform. Empirical
Software Engineering 25, 3 (May 2020), 1864–1904. https://doi.org/10.1007/s10664-
019-09796-5 Company: Springer Distributor: Springer Institution: Springer Label:
Springer Number: 3 Publisher: Springer US.

[41] Giuseppe Antonio Pierro and Roberto Tonelli. 2021. Analysis of Source Code
Duplication in Ethreum Smart Contracts. 701–707. https://doi.org/10.1109/
SANER50967.2021.00089

[42] Chanchal Roy and James Cordy. 2007. A Survey on Software Clone Detection
Research. School of Computing TR 2007-541 (Jan. 2007).

[43] Amritraj Singh, Reza Meimandi Parizi, Qi Zhang, Kim-Kwang Raymond Choo,
and Ali Dehghantanha. 2020. Blockchain smart contracts formalization: Ap-
proaches and challenges to address vulnerabilities. Comput. Secur. 88 (2020).

[44] Anna Vacca, Andrea Di Sorbo, Corrado A Visaggio, and Gerardo Canfora. 2021.
A systematic literature review of blockchain and smart contract development:
Techniques, tools, and open challenges. Journal of Systems and Software 174
(2021), 110891.

[45] Zhiyuan Wan, Xin Xia, David Lo, Jiachi Chen, Xiapu Luo, and Xiaohu Yang. 2021.
Smart contract security: A practitioners’ perspective. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1410–1422.

[46] MaximilianWohrer and Uwe Zdun. 2018. Smart contracts: security patterns in the
ethereum ecosystem and solidity. In 2018 International Workshop on Blockchain
Oriented Software Engineering (IWBOSE). IEEE, 2–8.

[47] Carl R. Worley and Anthony Skjellum. 2018. Opportunities, Challenges, and
Future Extensions for Smart-Contract Design Patterns. In Business Information
Systems.

[48] Jiahui Wu, Zhengzi Xu, Wei Tang, Lyuye Zhang, Yueming Wu, Chengyue Liu,
Kairan Sun, Lida Zhao, and Yang Liu. 2023. OSSFP: Precise and Scalable C/C++
Third-Party Library Detection using Fingerprinting Functions. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). 270–282. https:
//doi.org/10.1109/ICSE48619.2023.00034

[49] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. 2020. An overview on smart contracts: Challenges,
advances and platforms. Future Generation Computer Systems 105 (2020), 475–491.

[50] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.
2018. Blockchain challenges and opportunities: A survey. International Journal
of Web and Grid Services 14 (10 2018), 352. https://doi.org/10.1504/IJWGS.2018.
095647

[51] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia,
Yang Feng, Zhenyu Chen, and Baowen Xu. 2019. Smart contract development:
Challenges and opportunities. IEEE Transactions on Software Engineering 47, 10
(2019), 2084–2106.

Received 2023-02-02; accepted 2023-07-27

https://github.com/ethereum/solidity
https://github.com/
https://docs.ipfs.tech/concepts/ipfs-gateway/
https://gateway.ethswarm.org/
https://remix-ide.readthedocs.io/en/latest/import.html
https://github.com/antlr/antlr4
http://etherscan.io/
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://www.npmjs.com/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/anyswap/multichain-smart-contracts
https://github.com/anyswap/multichain-smart-contracts
https://docs.soliditylang.org/en/v0.8.17/contracts.html
https://docs.soliditylang.org/en/v0.8.17/contracts.html
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://halborn.com/explained-the-multichain-hack-january-2022/
https://halborn.com/explained-the-multichain-hack-january-2022/
https://goerli.etherscan.io/
https://hardhat.org/
https://sites.google.com/view/solidity-contract-analysis/home
https://ethereum.org/en/
https://uniswap.org/
https://github.com/manifoldxyz/creator-core-solidity
https://github.com/manifoldxyz/creator-core-solidity
https://github.com/PatrickAlphaC/storage-factory-fcc
https://github.com/PatrickAlphaC/storage-factory-fcc
https://polygon.technology/
https://en.wikipedia.org/wiki/Smart_contract
https://www.bnbchain.org/
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1109/SANER50967.2021.00050
https://doi.org/10.1109/SANER50967.2021.00050
https://doi.org/10.1017/S0305004100016595
https://doi.org/10.1017/S0305004100016595
https://www.smartcontracts.tools/token-generator/
https://doi.org/10.1109/TSE.2022.3207428
https://doi.org/10.1109/TSE.2022.3207428
https://doi.org/10.1007/s10664-020-09852-5
https://doi.org/10.1002/9781118445112.stat05700
https://doi.org/10.1002/9781118445112.stat05700
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1007/978-3-319-42019-6_10
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1007/s10664-019-09796-5
https://doi.org/10.1007/s10664-019-09796-5
https://doi.org/10.1109/SANER50967.2021.00089
https://doi.org/10.1109/SANER50967.2021.00089
https://doi.org/10.1109/ICSE48619.2023.00034
https://doi.org/10.1109/ICSE48619.2023.00034
https://doi.org/10.1504/IJWGS.2018.095647
https://doi.org/10.1504/IJWGS.2018.095647

	Abstract
	1 Introduction
	2 Background
	3 Empirical Study
	3.1 Research Questions
	3.2 Dataset Preparation
	3.3 Contract Clone Decomposition (RQ1)
	3.4 Analysis of Self-Developed Subcontracts (RQ2)
	3.5 Analysis of External Subcontracts (RQ3)
	3.6 Development Patterns (RQ4)

	4 Implications and Lessons
	4.1 Result Summary
	4.2 Lessons Learned
	4.3 Future Research Directions
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	7 Data Availability
	References

